
Automated Testing Linguistic Capabilities of NLP Models

JAESEONG LEE, SIMIN CHEN, and AUSTIN MORDAHL, The University of Texas at Dallas, USA
CONG LIU, University of California, Riverside, USA
WEI YANG and SHIYI WEI, The University of Texas at Dallas, USA

Natural language processing (NLP) has gained widespread adoption in the development of real-world ap-
plications. However, the black-box nature of neural networks in NLP applications poses a challenge when
evaluating their performance, let alone ensuring it. Recent research has proposed testing techniques to en-
hance the trustworthiness of NLP-based applications. However, most existing works use a single, aggregated
metric (i.e., accuracy) which is difficult for users to assess NLP model performance on fine-grained aspects
such as linguistic capabilities. To address this limitation, we present ALiCT, an automated testing technique
for validating NLP applications based on their linguistic capabilities. ALiCT takes user-specified linguistic
capabilities as inputs and produce diverse test suite with test oracles for each of given linguistic capability. We
evaluate ALiCT on two widely adopted NLP tasks, sentiment analysis and hate speech detection, in terms of
diversity, effectiveness, and consistency. Using Self-BLEU and syntactic diversity metrics, our findings reveal
that ALiCT generates test cases that are 190% and 2213% more diverse in semantics and syntax, respectively,
compared to those produced by state-of-the-art techniques. In addition, ALiCT is capable of producing a larger
number of NLP model failures in 22 out of 25 linguistic capabilities over the two NLP applications.

CCS Concepts: • Computing methodologies → Natural language processing; • Software and its
engineering→ Software verification and validation.

Additional Key Words and Phrases: Software testing, Linguistic capability, Sentiment analysis, Hate speech
detection

ACM Reference Format:
Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei. 2023. Automated Testing
Linguistic Capabilities of NLP Models. J. ACM 37, 4, Article 111 (August 2023), 34 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction

The field of natural language processing (NLP) is currently undergoing substantial growth, finding
applications in diverse domains such as entertainment, health, and safety [5, 49, 82]. Since these
models are often directly interacting with human beings, it is critical to ensure their quality and
trustworthiness, lest they give incorrect or even harmful feedback to their users [1, 2, 38, 44, 48,
66, 71, 72, 78]. Traditionally, NLP models are assessed using metrics that evaluate the model as a
whole. The most common metric is accuracy (i.e. the fraction of outputs that the model correctly
predicts). However, relying solely on a singular, aggregated metric like accuracy fails to capture
and evaluate the nuanced behavior of NLP models.

Authors’ Contact Information: Jaeseong Lee, jxl115330@utdallas.edu; Simin Chen, sxc180080@utdallas.edu; Austin Mordahl,
austin.mordahl@utdallas.edu, The University of Texas at Dallas, Richardson, Texas, USA; Cong Liu, University of California,
Riverside, Riverside, USA, congl@ucr.edu; Wei Yang, wei.yang@utdallas.edu; Shiyi Wei, swei@utdallas.edu, The University
of Texas at Dallas, Richardson, Texas, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 ACM.
ACM 1557-735X/2023/8-ART111
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111:2 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

1 pos_adj = ['good', 'great', 'excellent', 'amazing', ...]
2 neg_adj = ['awful', 'bad', 'horrible', 'weird', ...]
3 change = ['but', 'even though', 'although']
4 t = editor.template([
5 'I used to think this airline was {neg_adj}, {change} now I think it is {pos_adj}.',
6 'I think this airline is {pos_adj}, {change} I used to think it was {neg_adj}.',
7 'In the past I thought this airline was {neg_adj}, {change} now I think it is {pos_adj}.',
8 'I think this airline is {pos_adj}, {change} in the past I thought it was {neg_adj}.'] ,
9 change=change, ... ,labels=2)

Fig. 1. Example of CHECKLIST template for the linguistic capability “Sentiment changes over time, present
should prevail”.

Several recent works have focused on evaluating NLP models using different criteria, including
their robustness against adversarial examples [1, 38, 48, 72, 78] and potential biases concerning
demographic groups [2, 44, 66, 71]. Still, these works all only focus on evaluating specific, singular
aspects of NLP models, and do not aim to provide a comprehensive evaluation of a model’s
performance from a variety of different perspectives. Consequently, recent studies have proposed
new testing approaches based on linguistic capabilities [60–62]. A linguistic capability defines the
expected behavior of an NLP application within its specific domain, specifying the functionalities
of language. Unlike traditional evaluation metrics, linguistic capability-based testing incorporates
diverse aspects that collectively contribute to the overall proficiency of an NLP model across
different capabilities, thus reducing the risk of overestimating model performance. As a result,
it provides a comprehensive assessment of the strengths and weaknesses of a given NLP model,
offering detailed insights into its performance.
For example, Figure 1 shows one template in a state-of-the-art linguistic capability-based tech-

nique, CHECKLIST, for the linguistic capability of “Sentiment changes over time, present should
prevail” [60]. The linguistic capability conveys the notion that, in a sentence that describes both past
and present sentiments, the present sentiment holds greater significance than the past sentiment. If
a model exhibits underperformance in terms of the linguistic capability, it suggests that the model’s
false predictions may be caused by the inadequate prioritization of the sentiment over time. To
evaluate the NLP model on the linguistic capability, CHECKLIST defines manually crafted templates
in lines 4 to 9. These templates contain placeholders, 𝑝𝑜𝑠_𝑎𝑑 𝑗 , 𝑛𝑒𝑔_𝑎𝑑 𝑗 , and 𝑐ℎ𝑎𝑛𝑔𝑒 . Values for
the placeholders are a collection of words defined in lines 1 to 3. For each template, CHECKLIST
fills in all the combinations of the possible values of placeholders to generate sentences under this
linguistic capability. For example, sentences such as “I used to think this airline was bad, but now I
think it is good.” and “In the past I thought this airline was awful, even though now I think it is great.”
are generated. In these test cases, the adverb “now” refers to the present, and the sentiment in the
phrase containing “now I think it is” represents the present sentiment, while sentiment outside
of this context reflects the past sentiment. Therefore, all test cases generated from the template
conform to the linguistic capability, i.e., “Sentiment changes over time, present should prevail” for this
example. These test cases can be used to assess how well a sentiment analysis model understands
sentiment changes over time. However, state-of-the-art linguistic capability-based approaches
present two major limitations:
• Linguistic capabilities are written using natural language [60–62]. Due to the inherent ambiguity
of natural language descriptions, the exact meaning of an linguistic capability can be unclear.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:3

This makes it difficult to automatically generate test cases that (1) conform to a specific linguistic
capability, and (2) with a known oracle/label (e.g., a sentiment).
• Current linguistic capability-based testing methods heavily depend on manually constructed
word substitution templates to generate test cases. However, this approach restricts the semantic
and structural diversity and coverage in the generated test cases, limiting their effectiveness.
To address these limitations, we present ALiCT, an Automated Linguistic Capability Testing

framework for NLP models. The goal of this work is to generate a diverse linguistic capability-
based test suite automatically. Given the limitations of current linguistic capability-based testing,
an automated test case generation system should meet two requirements: (i) relevance between
generated test cases and their linguistic capabilities and labels and (ii) semantic and structural diversity.
Relevance. Generating test cases that exercise a specific linguistic capability is challenging due to
the inherent ambiguity in natural language descriptions. This ambiguity makes it hard to specify
the range of attributes of test case that conforms to the linguistic capability, making it difficult to
automatically confirm the relevance between generated test cases and their linguistic capabilities
and labels. For example, consider the linguistic capability of “Author sentiment is more important
than of others” in Figure 1 . In order to convey this capability accurately, an indicator token such as
“I" must be present to indicate the author’s sentiment. Replacing this token with alternatives like
“he" or “she" would result in a failure to meet the requirements of the linguistic capability. There is
currently no existing approach that can automatically determine the linguistic capability a sentence
is relevant to, and its associated label. Existing metamorphic or adversarial testing approaches
consider only labels of generated test cases without checking which linguistic capabilities they
conform to [1, 38, 48, 72, 78]. ALiCT tackles the issue by introducing a novel linguistic capability
formal specification. By providing formal and systematic specifications of linguistic capabilities,
ALiCT can perturb existing examples in a thorough, systematic, and exhaustive manner to generate
new, relevant test cases.
Semantic and structural diversity. Although the existing word substitution templates utilized
in linguistic capability-based testing can generate multiple test cases, their fixed nature causes
them to suffer from limited variability in both semantic and structural aspects. Consequently, these
templates fall short in providing a thorough and dependable evaluation of NLP models regarding
their linguistic capabilities. To overcome this challenge, ALiCT generates test cases by searching
for a wide range of test cases that align with the formal specifications of their linguistic capabilities
in existing labeled dataset. Next, if required, ALiCT generates seed test cases by combining and
replacing them according to the given specifications. This approach leverages the diversity present
in the labeled dataset, significantly enhancing diversity across semantic and syntactic dimensions.
Additionally, the synthesis of retrieved phrases within the dataset serves to further amplify this
inherent diversity.

Furthermore, ALiCT identifies potential enhancements in input sentence structures through an
analysis of the parse trees associated with the initial seed test cases. Subsequently, ALiCT generates
expanded test cases by populating the extended components and validating the pertinence of these
expansions concerning their label, linguistic capability, and the semantics of the original seed test
cases. The ascertained expansions encompass a wider spectrum of structural diversity, thereby
fostering a more comprehensive testing approach encompassing both semantic and structural
dimensions in the scope of the linguistic capability.

In this work, as a first step, we consider sentiment analysis [40] and hate speech detection [63]
as the NLP applications for automated linguistic capability-based testing. We demonstrate the
effectiveness of ALiCT by evaluating three sentiment analysis and two hate speech detection
models.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:4 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

Table 1. An example that shows two models with similar overall accuracies for sentiment analysis, but they
have vastly different strengths and weaknesses for different linguistic capabilities.

Linguistic capability Dataset Model Accuracy

Overall SST-2 [65] BERT-base 92.7%
RoBERTa-base 94.8%

“Negated positive with neutral content in the middle” CHECKLIST [60] BERT-base 26.0%
RoBERTa-base 69.8%

“Parsing sentiment in (question, “no”) form” CHECKLIST BERT-base 44.6%
RoBERTa-base 45.2%

“Sentiment changes over time, present should prevail” CHECKLIST BERT-base 81.2%
RoBERTa-base 89.0%

We made the following contributions in this work:
• We present the formal specifications of a series of widely used linguistic capabilities, originally
represented in natural language descriptions (Table 2 and 3). Utilizing these formal specifications,
we develop and implement ALiCT, an automated approach for linguistic capability-based testing.
ALiCT consistently generates test cases that align with the respective linguistic capabilities and
their associated labels, all achieved through automated processes.
• We evaluate text classification models on test cases generated by ALiCT on 11 and 14 linguistic
capabilities for sentiment analysis and hate speech detection, respectively. Comparing with the
state-of-the-art linguistic capability-based testing baselines, we find that ALiCT produces at least
88% more diverse test cases, measured in Self-BLEU [83] and syntactic diversity, and a larger
number of NLP model failures in 22 out of 25 linguistic capabilities over the two NLP applications.
• We perform a case study that applies ALiCT results to help developers understand the bugs in the
NLP models. We show that ALiCT is useful for identifying the root casues of bugs in sentiment
analysis models.
• All the data and source code in our study are publicly available at our GitHub repository 1.

2 Background & Motivation

NLP models are machine learning models whose goal is to analyze, manipulate, or generate
human language. Examples of common NLP models include predictive text, autocorrect, machine
translation, and, more recently, generative chatbots such as ChatGPT [49]. When developing an
NLP model, it is critical to understand how accurate it is. Accuracy, in this sense, refers to the
model’s ability to correctly predict the labels for an unlabeled dataset, defined as follows:

Accuracy =
#correct predictions

#predictions
(1)

While accuracy gives a good overall picture of a model’s performance, it is limited in assessing the
relative strengths and weaknesses of different models. Table 1 presents an example of two models’
performance, reported by one state-of-the-art linguistic capability testing approach, CHECKLIST.
Row 2 shows that both the BERT-base and RoBERTa-base models attain comparable accuracies on
the SST-2 test set, scoring 92.7% and 94.8%, respectively [60]. However, despite sharing a similar
level of overall accuracy, these models exhibit distinct strengths and weaknesses when addressing
the same classification problem across various linguistic capabilities.
Row 3 shows that BERT-base model exhibits comparatively lower performance in contrast to

the RoBERTa-base model within the context of the linguistic capability titled “Negated positive

1https://github.com/jasonlee27/alict

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:5

with neutral content in the middle”. However, Rows 4 and 5 show that they both achieve accuracy
levels that are below the overall accuracy, although the accuracy levels between the two models
are comparable for the linguistic capability called “Parsing sentiment in (question, “no”) form” and
“Sentiment changes over time, present should prevail”, respectively.

To address this problem, linguistic capability-based testing has been recently introduced to give
a more detailed look at the abilities of NLP models [60–62]. A linguistic capability denotes a specific
task-oriented linguistic functionality that a language model is anticipated to perform with precision
within the scope of an NLP application. It encompasses a combination of diverse aspects, such as
grammar, vocabulary, syntax, semantics, and language comprehension. For example, the linguistic
capability “Sentiment changes over time, present should prevail” in Table 1 conveys the notion that,
in a sentence that describes both a past and present sentiment, the present sentiment holds greater
significance than the past sentiment. When the model exhibits underperformance in terms of the
linguistic capability, it suggests that the inadequate prioritization of the present tense over the past
tense contributes to the model’s false predictions.
Assessing models based on their linguistic capabilities allows for the identification of vary-

ing accuracies across different capabilities. This evaluation aids users in identifying biases or
shortcomings within the model, providing a valuable means to debug and address such biases.
Earlier methodologies have introduced various task-specific linguistic capabilities and assessed
NLP models based on these capabilities by generating test cases that conform to the linguistic
capabilities [60–62].
Despite the potential usefulness of linguistic capability testing, all existing capability testing

work [60–62] shares common limitations. First, linguistic capabilities themselves are written in
natural language, which means that they are inherently ambiguous. This means that in practice, we
cannot take a given target sentence and classify it as belonging to a specific linguistic capability or
not. As a result, avenues for automatic generation of test cases are so far limited to manually written
templates with placeholders. Moreover, performing word substitution for the template placeholders
produce similar test cases with regard to input text and structure. The limited diversity in test cases
results in bias in model evaluation on the linguistic capability. These limitations motivated the
design of our approach.

3 Specification- and Syntax-based Linguistic Capability Testing

Syntax-based sentence expansion

Expanded
sentences

Masked
sentences

seed
sentences

Linguistic
capability

specifications

Labelled
search
dataset

 Specification-based
seed generation

Generation
domain

knowledge

Reference
corpus

Syntactic
expansion

identification

Sentence
expansion &

validation

Word
suggestion

model

S2LCT test
suite

Expansion
domain

knowledge

Fig. 2. Overview of ALiCT.

To address the limitations of existing work, we have developed and implemented an innovative
NLP model testing framework, ALiCT. ALiCT is designed with two primary objectives: first, to

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:6 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

offer a formal specification language for the precise definition of linguistic capabilities, thereby
ensuring clear and unambiguous definitions that can be processed by machines. Second, ALiCT
facilitates the automated generation of test cases with a wide range of syntactic variations that
adhere to the specified linguistic capability.
Figure 2 depicts an overview of ALiCT, which consists of two phases. The specification-based

seed generation phase realizes the first goal. In this phase, it takes linguistic capability specifications,
a labelled search dataset, and generation domain knowledge as inputs. In this study, we first
operationalize the natural language description of the linguistic capability tailored for sentiment
analysis and hate speech detection tasks. The natural language descriptions are then formalized
into specification rules, allowing for the fully automatic generation of structurally diverse test
cases. The formal specification rules consists of two types of elements : structural predicates, which
allow us to extract seed test cases from the corpus that meet certain criteria, and generative rules,
which describe how to mutate seeds to produce new test cases. These structural predicates and
generative rules are used in tandem to produce test cases based on linguistic capabilities (Section
3.1). To increase the syntactical diversity of test cases generated by ALiCT, we utilize a syntax-
based sentence expansion phase (Section 3.2). Inputs for this phase are seed test cases generated
from specification-based seed generation phase, the reference corpus, word suggestion model and
expansion domain knowledge. This phase performs a syntax analysis to automatically identify
expansion points in the sentence (i.e., places where new words can be added while retaining the
sentence’s relevance to the linguistic capability). Part-of-speech (PoS) tags that can be added to
the seed test cases, by comparing the PoS parse trees of the seed test cases with a large reference
corpus of sentences. The identified tags are then inserted into the seed test cases as a mask. A
language model, such as BERT [13], is then used to suggest words that can fill in the mask. Finally,
the resulting sentence is checked to ensure it is consistent with the seed’s label, linguistic capability
and semantic meaning between seed and expanded test cases. The generated test suite includes
both the original seeds and the expanded test cases. This approach enables ALiCT to cover a wide
range of syntactic structures, enhancing its effectiveness in evaluating NLP models.

3.1 Specification-based Seed Generation

In the specification-based seed generation phase, ALiCT uses specifications of linguistic capabilities
to construct test cases. The key novelty of this phase is that we use formal specifications to enable
the fully automatic generation of structurally diverse test cases. These formal specifications take the
form of a series of rules, split into two categories. First, structural predicates are applied, which filter
a labelled input dataset into sentences that meet the structural criteria of the linguistic capability.
By structural criteria, we mean properties of a sentence that are easily checkable by a machine (e.g.,
the length of the sentence, whether it contains particular grammatical elements, or the label of the
sentence). Then, we use generative semantic rules to generate sentences that meet the semantic
properties of the linguistic capability. This 2-step process allows the automatic construction of
sentences that fulfill a linguistic capability.
Structural Predicates. Sentences that conform to linguistic capabilities must first conform to
certain structural criteria, depending on the linguistic capability. We formalize the process of
filtering the input corpus using structural predicates. A structural predicate refers to a logical
expression that tests an attribute of a sentence and returns true or false. Formally, we write
structural predicates using set notation, with attributes specified as fields with a Java-style dot
notation. For example, expressing the structural predicate “sentences with fewer than 10 words”
would be written as {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .length < 10}, where 𝑈 represents the universal set (i.e., the
labelled input dataset).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:7

CC

FRAG

NP .

DT

both

Or .

Seed:
Or both.

(The performance is remarkable., positive)

(It is not scary., negative)

(Or both., neutral)

(Alas, it is neither., negative)

(The actors are fantastic., positive)

(Sentence,Sentiment)

LC: Short sentences with
neutral adjectives and nouns

 Seed: NP-> [DT]

Reference:
NP-> [DT, NNS]

(ways, NNS, neutral)

(do, VB, positive)

(things, NNS, neutral)

(either, CC, neutral)

(simultaneously, RB, neutral)

(now, RB, neutral)

{MASK} Word Suggestion

CC

FRAG

NP .

DT

both

Or .

Expansion:
Or both {MASK}.

NNS

{MASK}

Or both ways.

Or both things.

(Word,TagOfPOS,Sentiment)

Specification-based seed
generation

Syntax expansion
identification

Sentence expansion
& validation

Expanded
Sentences

Fig. 3. Running example of ALiCT.

Generative Rules. Structural predicates allow us to filter the input dataset to sentences with
desirable properties, but they are limited to syntactic or classification conditions (i.e., the sentence’s
label or structural properties). Testing semantic properties would require an NLP model, which
raises issues of circularity. Instead, to produce sentences that conform to semantic conditions,
we use generative rules, which mutate sentences that meet certain structural conditions. These
generative rules allow us to introduce specific semantic meaning to a seed sentence. ALiCT uses
two specific kinds of generative rules: concat and replace. These rules, as depicted in Equation 2,
are designed to encompass various generation operations.

𝑆 = concat(phrases*)
𝑆 = replace(phrase, src, tgt) (2)

The concat rule takes a variable number of parameters, and simply concatenates them together.
The replace rule, on the other hand, has three parameters: phrase, src and tgt. This rule replaces
occurrences of the src string in phrase with the tgt string.
For example, let us consider the linguistic capability “negated neutral should still be neutral”.

ALiCT will use structural predicates (as previously illustrated) to find neutral sentences. Then,
ALiCT will negate these sentences using a generative rule. The goal of the generative rule is to make
some transformation to a neutral sentence that negated it. There are many ways to do this, one such
way is to add the phrase “is not true” to the end of a sentence, via 𝑆 = concat(𝑆, “ is not true.”). This
example illustrates the effort needed to construct a specification for an linguistic capability. First,
the user must identify the structural conditions of the linguistic capability. Then, they construct
structural predicates to exhaustively check the input corpus for sentences that fulfill the predicate.
Second, the user must design generative rules to introduce appropriate semantic meaning. This
process is complete: while this approach cannot generate every sentence that conforms to a specific
linguistic capability, we can guarantee that sentences that are generated do conform to the linguistic
capability.
Running Example. The first column of Figure 3 shows a handful of candidate sentences that are
produced by applying the structural predicates of the linguistic capability (note that the specific
linguistic capability used does not have any generative rules as shown in Table 2). Of the five
sentences shown, only one fulfills all the criteria laid out by the structural predicates.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:8 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

3.2 Syntax-based Sentence Expansion

So far, we have only shown how to directly produce seed test cases from a specification. However,
the structural diversity of these sentences is limited by the diversity of the labelled input dataset.
To address this limitation, we design the syntax-based sentence expansion phase to extend the
seed sentences to cover diverse syntactic structures while still conform to its respective linguistic
capability. Our insight is that sentences commonly used in real life cover diverse and realistic
syntactic structures that can be used as the basis for the expansion. So, we utilize a large reference
corpus of unlabeled input sentences, and generate parse trees for each one. Then, for each generated
test case 𝑆 , we search the corpus for sentences that have a superstructure of 𝑆 . We illustrate
the definition of superstructure using an example. Consider a production 𝐴 → [𝐵,𝐶]. Another
production is a superstructure if and only if (1) the left side of the production is also 𝐴, and (2) the
right side of the production contains both 𝐵 and𝐶 , and 𝐵 precedes𝐶 . Some examples of productions
that are superstructures of 𝐴 → [𝐵,𝐶] are 𝐴 → [B,C, 𝐷], 𝐴 → [B, 𝐴,C], or 𝐴 → [𝐷,B, 𝐴,𝐺,C]
The additional PoS tags in the reference parse trees are identified as potential syntactic elements
for expansion and are inserted into the seed sentences as masks. Subsequently, a masked language
model is employed to propose suitable fill-ins for these masks. If the resulting sentences are validated
to adhere to their linguistic capabilities and labels, they are incorporated into ALiCT’s test suite.

Algorithm 1 Syntax expansion identification algorithm.
1: Input: Parse trees of seed sentences 𝑆 , reference CFG 𝑅
2: Output: Set of masked sentences𝑀
3: for each part tree 𝑠 from 𝑆 do
4: for each production 𝑠_𝑝𝑟𝑜𝑑 from 𝑠 do
5: 𝑠_𝑙ℎ𝑠 = 𝑠_𝑝𝑟𝑜𝑑.𝑙ℎ𝑠
6: 𝑠_𝑟ℎ𝑠 = 𝑠_𝑝𝑟𝑜𝑑.𝑟ℎ𝑠
7: for each 𝑟_𝑟ℎ𝑠 from 𝑅 [𝑠_𝑙ℎ𝑠] do
8: if 𝑟_𝑟ℎ𝑠.𝑖𝑠_𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑜 𝑓 (𝑠_𝑟ℎ𝑠) then
9: 𝑀 = 𝑀 ∪ 𝑖𝑛𝑠𝑒𝑟𝑡𝑀𝑎𝑠𝑘 (r_rhs-s_rhs, 𝑠)
10: return 𝑀

3.2.1 Syntax Expansion Identification Algorithm 1 shows how masks are identified for the seed
sentences. It takes the parse trees of the seeds, generated by the Berkeley Neural Parser [33, 34], and
a reference context-free grammar (CFG) (i.e., the reference corpus in Figure 2) as inputs. Overall,
this algorithm identifies the discrepancy between the seed syntax and the reference grammar
to decide how a seed and what syntax in the seed can be expanded, producing a set of masked
sentences.
For each production in each seed’s parse tree (lines 3 and 4), we extract its non-terminal at the

left-hand-side (line 5), 𝑠_𝑙ℎ𝑠 , and the grammar symbols at the right-hand-side (line 6), 𝑠_𝑟ℎ𝑠 . In
line 7, the algorithm iterates through all productions in the reference CFG and matches these that
have the same non-terminal at the left-hand-side as 𝑠_𝑙ℎ𝑠 . The right-hand-side of each matched
production is called 𝑟_𝑟ℎ𝑠 . If 𝑟_𝑟ℎ𝑠 is a superstructure of 𝑠_𝑟ℎ𝑠 (line 8), the additional symbols in
the 𝑟_𝑟ℎ𝑠 are inserted as masks in the parse tree of the seed sentence, in their respective positions
in the expanded production. The left to right traversal of the leaves of an expanded parse tree forms
a masked sentence. All the masked sentences of each seed are returned at line 10.
Running Example. The second and third columns in Figure 3 illustrate how Algorithm 1 is used
to generate a masked sentence. The second column shows the parse tree of the seed sentence “Or
both.", which consists of two productions: “𝐹𝑅𝐴𝐺 → [𝐶𝐶, 𝑁𝑃, .]” and “𝑁𝑃 → [𝐷𝑇]” where 𝐹𝑅𝐴𝐺 ,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:9

𝐶𝐶 , 𝑁𝑃 , 𝐷𝑇 stand for a fragment, a coordinating conjunction, a noun phrase, and a determiner,
respectively. When matching the left-hand-side non-terminal of the second production (i.e., “𝑁𝑃”)
in the reference CFG, we found that the reference CFG includes a production “𝑁𝑃 → [𝐷𝑇, 𝑁𝑁𝑆]”
which has an additional symbol 𝑁𝑁𝑆 on the right-hand-side. The extra symbol is inserted as a
mask in the seed sentence, producing the masked sentence “Or both {𝑀𝐴𝑆𝐾}.”

3.2.2 Sentence Expansion and Validation To expand a masked sentence, our approach can use a
language model to fill in the masks with words. In our instantiation, we use BERT model [13], which
is a transformer-based natural language model that is pre-trained on masked token prediction task.
BERT model is capable of suggesting words for the masked token according to its surrounding
context in a sentence. For each masked token, multiple words may be suggested, ranked by their
confidence scores. However, due to the BERT model’s lack of awareness regarding the grammar
symbol within the expanded parse tree, label, and linguistic capability, using all suggested words
to expand a sentence may result in inconsistencies with respect to its label, linguistic capability, or
the intended grammar symbol. Therefore, we perform validation on the suggested words and only
accept them if the following three criteria are met.
First, the PoS tag of the suggested words must align with that of the expanded symbol in the

parse tree. For instance, in the Figure 3, if the masked symbol represents a plural noun (“𝑁𝑁𝑆”),
the suggested word must also be a “𝑁𝑁𝑆”. In our implementation, we employ SpaCy [27], an
open-source NLP library in Python, to validate the PoS tag of each suggested word.
Second, maintaining semantic neutrality of the suggested words is crucial to ensure sentence

and label consistency between the expanded sentence and the seed. Modifying even a single word
has the potential to alter the overall label and linguistic capability of a sentence, which goes against
the objective of ALiCT. To mitigate this risk, we only consider neutral words from the suggested
words, necessitating the utilization of domain-specific knowledge to verify the sentiment of each
suggested word.
Third, we verify that the expanded sentences satisfy the same linguistic capability predicates

as their seed sentences. An expanded sentence may no longer be within the scope of its seed’s
linguistic capability. For example, the predicate shown in the second row of Table 2, that the
sentence must have fewer than 10 tokens, may no longer hold after expanding a seed sentence
with multiple words. We only accept an expanded sentence if the structural predicates are still
satisfied. Furthermore, we blacklist certain parts of the sentence from being expanded. Namely,
any part of the sentence that was modified by a generative rule may not be modified, to ensure
that the semantic meaning of the sentence does not change.
Running Example. The fourth column in Figure 3 shows the words suggested by BERT. For this
masked sentence, BERT suggested six words. Each word is associated with the tag of PoS and the
sentiment. Among the six words, only “ways” and “things” are validated by ALiCT because they
have the tag of Pos “NNS” and are neutral. In addition, both sentences still satisfy the enumerate
predicates of the linguistic capability “Short sentences with neutral adjectives and nouns”.

3.3 Instantiation

Tables 2 and 3 displays how ALiCT generates seed test cases for the sentiment analysis and
hate speech detection tasks, respectively. Our approach involves leveraging the baseline work,
specifically CHECKLIST and Hatecheck [60, 62], to instantiate these descriptions of linguistic
capabilities. During the initial evaluation of CHECKLIST and Hatecheck, we decided to exclude
capabilities related to model robustness, focusing on incorporating linguistic capabilities that
precisely delineate language functionalities. Notably, despite the absence of a fairness capability
in the original CHECKLIST paper, we observed its inclusion on its GitHub repository [58]. The

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:10 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

Table 2. Structural predicates and generative rules for the linguistic capabilities of sentiment analysis.

Linguistic capability Formalization

LC1: Short sentences
with neutral
adjectives and nouns

𝐼𝑛𝑖𝑡 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .length < 10 ∧ 𝑠 .label = neutral}
𝑁𝑒𝑢𝑡𝑠 ← {𝑠 | 𝑠 ∈ 𝐼𝑛𝑖𝑡 ∧ (𝑠 .labeled_pos ⊃ neutral_adj ∨ 𝑠 .labeled_pos ⊃ neutral_noun)}
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑁𝑒𝑢𝑡𝑠 ∧ (𝑠 .labeled_pos ⊃ positive_adj ∨ 𝑠 .labeled_pos ⊃ positive_noun)}
𝑁𝑒𝑔𝑠 ← {𝑠 | 𝑠 ∈ 𝑁𝑒𝑢𝑡𝑠 ∧ (𝑠 .labeled_pos ⊃ negative_adj ∨ 𝑠 .labeled_pos ⊃ negative_noun)}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑁𝑒𝑢𝑡𝑠 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 − 𝑁𝑒𝑔𝑠

LC2: Short sentences
with sentiment-laden
adjectives

𝐼𝑛𝑖𝑡 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .length < 10}
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝐼𝑛𝑖𝑡 ∧ (𝑠 .label = positive ∧ (𝑠 .labeled_pos ⊃ positive_adj ∨ 𝑠 .labeled_pos ⊃ positive_noun))}
𝑁𝑒𝑔𝑠 ← {𝑠 | 𝑠 ∈ 𝐼𝑛𝑖𝑡 ∧ (𝑠 .label = negative ∧ (𝑠 .labeled_pos ⊃ negative_adj ∨ 𝑠 .labeled_pos ⊃ negative_noun))}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑒𝑔𝑠

LC3: Sentiment
change over time,
present should prevail

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ← {“Previously, I used to like it saying that”, “Last time, I agreed with saying that”, “I liked it much as to say that”}
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥𝑒𝑠 ← {“now I like it.”}
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥𝑒𝑠 ← {“now I don’t like it.”, “now I hate it.”}
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ← {“I used t disagree with saying that”, “Last time, I didn’t like it saying that”, “I hated it much as to say that”}
𝐼𝑛𝑓 𝑖𝑥𝑒𝑠 ← {“but”, “although”, “on the other hand”}
𝑆𝑒𝑒𝑑𝑠 ← {𝑠 ∈ 𝑈 | 𝑠 .length < 20}
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦_𝑝𝑜𝑠 ← {𝑠 | 𝑠 ∈ 𝑆𝑒𝑒𝑑𝑠 ∧ 𝑠 .label = positive}
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦_𝑛𝑒𝑔← {𝑠 | 𝑠 ∈ 𝑆𝑒𝑒𝑑𝑠 ∧ 𝑠 .label = negative}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ← {concat(𝑎, 𝑠, 𝑏, 𝑑) | 𝑎 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥𝑒𝑠, 𝑏 ∈ 𝐼𝑛𝑓 𝑖𝑥𝑒𝑠, 𝑠 ∈ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦_𝑝𝑜𝑠, 𝑑 ∈ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠2 ← {concat(𝑎, 𝑠, 𝑏, 𝑑) | 𝑎 ∈ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥𝑒𝑠, 𝑏 ∈ 𝐼𝑛𝑓 𝑖𝑥𝑒𝑠, 𝑠 ∈ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦_𝑛𝑒𝑔, 𝑑 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ∪ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠2

LC4: Negated
negative should be
positive or neutral

𝑇𝑎𝑟𝑔𝑒𝑡𝑠 ← {“This is”, “That is”, “These are”, “Those are”}
𝐼𝑛𝑖𝑡 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = negative ∧ (∃𝑎 | 𝑎 ∈ 𝑇𝑎𝑟𝑔𝑒𝑡𝑠 ∧ 𝑠 .contains(𝑎))}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ← {replace(𝑠, “is”, “is not” | 𝑠 ∈ 𝐼𝑛𝑖𝑡}

LC5: Negated
neutral should
still be neutral

𝑇𝑎𝑟𝑔𝑒𝑡𝑠 ← {“This is”, “That is”, “These are”, “Those are”}
𝐼𝑛𝑖𝑡 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = neutral ∧ (∃𝑎 | 𝑎 ∈ 𝑇𝑎𝑟𝑔𝑒𝑡𝑠 ∧ 𝑠 .contains(𝑎))}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ← {replace(𝑠, “is”, “is not” | 𝑠 ∈ 𝐼𝑛𝑖𝑡}

LC6: Negation of
negative at the end,
should be positive
or neutral

𝑆𝑒𝑒𝑑𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = negative}
𝑝𝑟𝑒 𝑓1 ← {concat(“I agreed that”, 𝑠) | 𝑆 ∈ 𝑆𝑒𝑒𝑑𝑠}
𝑝𝑟𝑒 𝑓2 ← {concat(“I thought that”, 𝑠) | 𝑆 ∈ 𝑆𝑒𝑒𝑑𝑠}
𝑟𝑒𝑠1 ← {concat(𝑠, “but I don’t”) | 𝑆 ∈ 𝑝𝑟𝑒 𝑓1 ∪ 𝑝𝑟𝑒 𝑓2}
𝑟𝑒𝑠2 ← {concat(𝑠, “but it wasn’t”) | 𝑆 ∈ 𝑝𝑟𝑒 𝑓1 ∪ 𝑝𝑟𝑒 𝑓2}
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑟𝑒𝑠1 ∪ 𝑟𝑒𝑠2

LC7: Negated
positive with
neutral content
in the middle

𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ← {“I wouldn’t say”, “I do not think”, “I don’t agree with”}
𝑖𝑛𝑓 𝑖𝑥 ←′,′
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .length < 20 ∧ 𝑠 .label = positive}
𝑁𝑒𝑢𝑡𝑟𝑎𝑙𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .length < 20 ∧ 𝑠 .label = neutral}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← {concat(𝑎, 𝑠1, 𝑖𝑛𝑓 𝑖𝑥, 𝑠2) | 𝑎 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠, 𝑠1 ∈ 𝑁𝑒𝑢𝑡𝑟𝑎𝑙𝑠, 𝑠2 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠}

LC8: Author sentiment
is more important
than of others

𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ← {“Some people think that”, “Many people agree with that”, “They think that”, “You agree with that”}
𝑖𝑛𝑓 𝑖𝑥 ← “but I think that”
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = negative
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = positive
𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ← {concat(𝑝, 𝑖𝑛𝑓 𝑖𝑥, 𝑠) | 𝑝 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ∧ 𝑠 ∈ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠2 ← {concat(𝑝, 𝑖𝑛𝑓 𝑖𝑥, 𝑠) | 𝑝 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ∧ 𝑠 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ∪ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠2

LC9: Parsing
sentiment in
(question, yes) form

𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ← {“Do I think that”, “Do I agree that”}
𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥 ← “? yes”
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = negative}
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = positive}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ← {concat(𝑝, 𝑠, 𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥) | 𝑝 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ∧ 𝑠 ∈ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠2 ← {concat(𝑝, 𝑠, 𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥) | 𝑝 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ∧ 𝑠 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ∪ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠2

LC10: Parsing
sentiment in
(question, no) form

𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ← {“Do I think that”, “Do I agree that”}
𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥 ← “? no”
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = negative}
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = positive}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ← {concat(𝑝, 𝑠, 𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥) | 𝑝 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ∧ 𝑠 ∈ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠2 ← {concat(𝑝, 𝑠, 𝑝𝑜𝑠𝑡 𝑓 𝑖𝑥) | 𝑝 ∈ 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 ∧ 𝑠 ∈ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ∪ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠2

LC11: Fairness: Switching
identity group should not
change predictions

Results1← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .contains_identity_groups}
Results2 ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .contains_pronouns}
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑠𝑢𝑙𝑡𝑠1 ∪ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠2

column titled “linguistic capability” describes the linguistic capability, whereas the column labeled
“formalization” shows the corresponding structural predicates and generative rules. For instance,
consider the case of “Negation of negative at the end, should be positive or neutral” for sentiment
analysis. This linguistic capability specifies a structural property (that the sentence should have a
negative label), and a semantic property (that the sentence should be negated at the end). To find
seeds that fulfill the structural criteria, we start with a structural predicate, filtering the universal

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:11

Table 3. Structural predicates and generative rules for the linguistic capabilities of hate speech detection.
The slur and profanity in LC1-LC4 are the collections of terms that express slur and profanity. The identity in
LC11-LC12 is a list of names that used to describe social groups. In this work, we reuse these terms from
Hatecheck [62].

Linguistic capability Formalization
LC1: Hate expressed
using slur Results← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate ∧ 𝑠 .contains_slur}
LC2: Non-hateful
use of slur Results← {𝑠 | 𝑠 ∈ 𝑈 ∧ ¬(𝑠 .label = hate) ∧ 𝑠 .contains_slur}
LC3: Hate expressed
using profanity Results← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate ∧ 𝑠 .contains_profanity}
LC4: Non-Hateful
use of profanity Results← {𝑠 | 𝑠 ∈ 𝑈 ∧ ¬(𝑠 .label = hate) ∧ 𝑠 .contains_profanity}

LC5: Hate expressed
through reference in
subsequent clauses

Prefixes← {“people say”, “I heard that”}
infix1← “and”
infix2 ← “but”
Postfixes1← {“i hate them too”, “i also hate them”}
Postfixes2 ← {“i do not hate them”, “i like them”}
Postfixes3← {“i hate them”, “i dislike them”}
Postfixes4← {“i also do not hate them”, “i do not hate them too”}
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
NonHateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ ¬(𝑠 .label = hate)}
Results1← {concat(pr, ℎ, infix1, po) | pr ∈ Prefixes, ℎ ∈ Hateful, po ∈ Postfixes1}
Results2 ← {concat(pr, ℎ, infix2, po) | pr ∈ Prefixes, ℎ ∈ Hateful, po ∈ Postfixes2}
Results3← {concat(pr, ℎ, infix1, po) | pr ∈ Prefixes, ℎ ∈ NonHateful, po ∈ Postfixes3}
Results4← {concat(pr, ℎ, infix2, po) | pr ∈ Prefixes, ℎ ∈ NonHateful, po ∈ Postfixes4}
Results← Results1 ∪ Results2 ∪ Results3 ∪ Results4

LC6: Hate expressed
through reference in
subsequent sentences

Prefixes← {“people say”, “I heard that”}
infix ← “.”
Postfixes1← {“i hate them too”, “i also hate them”}
Postfixes2 ← {“however i do not hate them”, “regardless i like them”}
Postfixes3← {“however i hate them”, “i dislike them though”}
Postfixes4← {“i also do not hate them”, “i do not hate them too”}
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
NonHateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ ¬(𝑠 .label = hate)}
Results1← {concat(pr, ℎ, infix, po) | pr ∈ Prefixes, ℎ ∈ Hateful, po ∈ Postfixes1}
Results2 ← {concat(pr, ℎ, infix, po) | pr ∈ Prefixes, ℎ ∈ Hateful, po ∈ Postfixes2}
Results3← {concat(pr, ℎ, infix, po) | pr ∈ Prefixes, ℎ ∈ NonHateful, po ∈ Postfixes3}
Results4← {concat(pr, ℎ, infix, po) | pr ∈ Prefixes, ℎ ∈ NonHateful, po ∈ Postfixes4}
Results← Results1 ∪ Results2 ∪ Results3 ∪ Results4

LC7: Hate expressed
using negated
positive statement

Prefixes← {“I do not think that”, “I do not agree with that”, “I do not believe that”}
NonHateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ ¬(𝑠 .label = hate)}
Results← {concat(𝑝, 𝑠) | 𝑝 ∈ Prefixes ∧ 𝑠 ∈ NonHateful}

LC8: Non-hate
expressed using
negated hateful
statement

Prefixes← {“I do not think that”, “I do not agree with that”, “I do not believe that”}
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
Results← {concat(𝑝, 𝑠) | 𝑝 ∈ Prefixes ∧ 𝑠 ∈ Hateful}

LC9: Hate phrased
as a question

Prefixes← {“why do you agree with that”, “why do you like to say that”}
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
Postfix ← “?”
Results← {concat(𝑝, 𝑠,) | 𝑝 ∈ Prefixes ∧ 𝑠 ∈ Hateful}

LC10: Hate phrased
as a opinion

Prefixes← {“i think that”, “i believe that”}
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
Results← {concat(𝑝, 𝑠) | 𝑝 ∈ Prefixes ∧ 𝑠 ∈ Hateful}

LC11: Neutral
statements using
protected group
identifiers

Results ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .contains_identity ∧ ¬(𝑠 .label = ℎ𝑎𝑡𝑒) ∧ ¬(𝑠 .labeled_pos ⊃
positive_adj ∨ 𝑠 .labeled_pos ⊃ positive_noun ∨ 𝑠 .labeled_pos ⊃ positive_verb ∨
𝑠 .labeled_pos ⊃ negative_adj ∨ 𝑠 .labeled_pos ⊃ negative_noun ∨ 𝑠 .labeled_pos ⊃
negative_verb)}

LC12: Positive
statements using
protected group
identifiers

Results ← {𝑠 | 𝑠 ∈ 𝑈 ∧ ¬(𝑠 .label = hate) ∧ 𝑠 .contains_identity ∧ ¬(𝑠 .labeled_pos ⊃
negative_adj ∨ 𝑠 .labeled_pos ⊃ negative_noun ∨ 𝑠 .labeled_pos ⊃ negative_verb)}

LC13: Denouncements
of hate that quote it

prefix1← “statements like”
prefix2 ← “you should stop saying like”
Postfix ← {“are hurtful”, “are harmful”, “are deleterious”}
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
Results1← {concat(prefix1, 𝑠, po) | 𝑠 ∈ Hateful ∧ po ∈ Postfix}
Results2 ← {concat(prefix2, 𝑠) | 𝑠 ∈ Hateful}
Results← Results1 ∪ Results2

LC14: Denouncements
of hate that make
direct reference to it

prefix1← “saying that”
prefix2 ← “i cannot believe that”
postfix ← “shows how misguided you are”
Hateful ← {𝑠 | 𝑠 ∈ 𝑈 ∧ 𝑠 .label = hate}
Results1← {concat(prefix1, 𝑠, postfix) | 𝑠 ∈ Hateful}
Results1← {concat(prefix2, 𝑠) | 𝑠 ∈ Hateful}
Results← Results1 ∪ Results2

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:12 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

set to sentences with a negative label. Then, each of these sentences is mutated to fulfill the
semantic property that they are negated. To do this, we use concat rules, which add a prefix and
a postfix to each sentence that negates the sentence at the end. Specifically, we use the set of
prefixes {“I agreed that”, “I thought that”} and the set of postfixes {“but it wasn’t”, “but I didn’t”}.
A sentence like “The movie was bad” that initially has a negative label would thereby be transformed
into the sentences “I agreed that The movie was bad but it wasn’t,” “I agreed that the movie was bad
but it didn’t,”, “I thought that The movie was bad but it wasn’t,” and “I thought that The movie was
bad but it didn’t.” In short, the number of test cases generated is the number of test cases found by
the structural predicates times the number of generative rules. ALiCT efficiently utilizes patterns
extracted from templates found in existing literature [60, 62] for various linguistic capabilities. By
leveraging these patterns from prior work, we successfully derived specifications for each linguistic
capability in less than 3 minutes per capability. Moreover, our reusable functions for derivation are
crafted to be widely applicable across various capabilities.
4 Experimental Setup

In this section, we present the setup of our experiments. We answer the following research questions
(RQs):
RQ1 Diversity. Can ALiCT generate more diverse test cases than existing approaches?
RQ2 Consistency. Can ALiCT maintain consistency in terms of labels, linguistic capabilities, and

semantics?
RQ3 Effectiveness. Is ALiCT more effective than existing approaches at generating test cases

that can trigger errors in the model?

RQ4 Applicability to Large Language Model (LLM). Can ALiCT be utilized to evaluate the
recent LLMs?

4.1 Experimental Subjects

Table 4. The NLP model used in the evaluation.

Tasks Model Name API URL #Downloads

Sentiment Analysis BERT-base bert-base-uncased-SST-2 48,004
Sentiment Analysis RoBERTa-base roberta-base-SST-2 1,068
Sentiment Analysis DistilBERT-base distilbert-base-uncased-SST-2 26
Hate Speech Detection dehate-BERT dehatebert-mono-english 368
Hate Speech Detection twitter-RoBERTa twitter-roberta-base-hate 31,904

NLP Models. We evaluate our approach on three sentiment analysis models and two hate speech
detection models. We obtain these evaluation models from the HuggingFace model hub [28]. Table
4 presents the models and their corresponding API URLs. The “API URL” column displays the public
URL of each model, while the “# of downloads” column indicates the number of downloads for
each model as of Aug. 2023. Based on the information provided in Table 4, it is evident that all
models utilized in our evaluation have been widely adopted in real-world settings, with a number
of downloads. In the domain of sentiment analysis, we employed pre-trained sentiment analysis
models based on the architectures of BERT, RoBERTa, and a distilled version of BERT, which we
denoted as BERT-base, RoBERTa-base, and DistilBERT-base, respectively. Furthermore, we utilized
BERT and RoBERTa models that were trained for hate speech detection, identified as dehate-BERT
and twitter-RoBERTa, respectively. For RQ4, we utilized GPT3.5 model (gpt-3.5-turbo) developed
by OpenAI [50]
Datasets. In our evaluation of NLP models, we utilize the SST [65] corpus for sentiment analysis
and the HateXplain [46] corpus for hate speech detection as the labeled search datasets. SST is

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://huggingface.co/textattack/bert-base-uncased-SST-2
https://huggingface.co/textattack/roberta-base-SST-2
https://huggingface.co/textattack/distilbert-base-uncased-SST-2
https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-english
https://huggingface.co/cardiffnlp/twitter-roberta-base-hate

Automated Testing Linguistic Capabilities of NLP Models 111:13

a corpus of movie reviews that consists of 11,855 sentences, each of which has been labeled as
negative, neutral, or positive to indicate the expressed sentiment in the sentence. HateXplain is a
dataset that has been collected from social media platforms Twitter and Gab. It consists of 20,148
sentences, with 9,055 of them being from Twitter and 11,093 from Gab. Each sentence in this dataset
has been labeled as either “hate” or “non-hate” to indicate the presence or absence of hate speech
in the sentence [46]. The HateXplain dataset encompasses 5,935 instances marked as “hate” and
14,213 instances marked as “non-hate”.
Baselines. In our evaluation, we compare ALiCT with the state-of-the-art capability-based testing
methodologies, CHECKLIST [60] and Hatecheck [62], focusing on two key aspects: test case
diversity (RQ1) and effectiveness (RQ3). These approaches have incorporated linguistic capabilities
into tasks such as sentiment analysis and hate speech detection. For each specific linguistic capability,
they have presented manually crafted word substitution-based templates or sentences, along with
corresponding labels.
We additionally assess the diversity of test cases generated during ALiCT’s expansion phase,

comparing it one syntax-based (MT-NLP [44]) approach and three adversarial (Alzantot-attack [1],
BERT-Attack [38] and SememePSO-attack [78]) text fuzzing methods. These methods are designed
to intentionally manipulate input text, aiming to induce inaccurate or unanticipated predictions
from a target NLP model. This is achieved through perturbations or modifications to the input text
while maintaining the semantic integrity of the text.

4.2 Evaluation Metrics

RQ1 Metrics. To answer RQ1, we define three metrics to measure the diversity of the generated
test suite. These metrics are designed to showcase the diversity from both semantic and syntactic
perspectives [4, 12, 26, 29, 77, 80]. Our first metric is Self-BLEU [83].
Self-BLEU is defined as the average BLEU score [51], a metric used to measuring the similarity

between the generated sentences and the reference sentences over all reference sentences, ranging
between 0 and 1. It first calculates the geometric average of the modified 𝑛-gram precisions, 𝑝𝑛 ,
by dividing the number of matching n-grams by the total number of candidate n-grams utilizing
𝑛-grams up to length 𝑁 and positive weights𝑤𝑛 that sum to one. Subsequently, considering 𝑐 as
the length of the candidate corpus and 𝑟 as the effective reference corpus length, BLEU is computed
using the equation 3.

BP =

{
1, if 𝑐 > 𝑟
𝑒1−𝑟/𝑐 , otherwise

BLEU = BP · exp
(

𝑁∑︁
𝑛=1

𝑤𝑛log𝑝𝑛

)
(3)

where BP is the Brevity Penalty. Then Self-BLEU is computed as the average of BLEU scores
over candidate corpora. A higher Self-BLEU score indicates lower diversity in the test suite, while
a lower score indicates greater diversity. The Self-BLEU metric serves as a quantitative measure
for semantic diversity, offering insights into the variability of meaning across the test cases. In
addition, since the BLEU score is determined through text comparison rather than sentence syntax
analysis, Self-BLEU lacks the capability to capture the structural diversity present within a test
suite. Consequently, we have introduced an alternative metric, syntactic diversity, to effectively
gauge the diversity inherent in the test suite’s syntactic aspects. The purpose of this metric is to
assess the extent of grammatical variation within the test suite. Since production rules serve as
fundamental components of formal grammar used to define the syntactic structure of a language,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:14 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

the count of unique production rules within the test suite serves as an indicator of the diversity of
grammatical patterns.
The syntactic diversity of a test suite X is defined as the number of distinct production rules

covered in this test suite. The formal definition of syntactic diversity is shown in Equation (4),
where P is the Berkeley Neural Parsing function [33, 34] that returns the production rule of the
given sentence.

𝑆𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (X) = | |{P(𝑥) | ∀𝑥 ∈ X}|| (4)
Our final metric is neuron coverage. The neural coverage metric is included to assess the extent to

which a specific aspect of a neural network model has been thoroughly tested by the provided test
cases. In this experiment, we follow the approach presented by Ma et al. [42], where the authors
measure the coverage of NLP model intermediate states as corner-case neurons. Because the matrix
computation of intermediate states impacts NLP model decision-making, a test suite that covers a
greater number of intermediate states can represent more NLP model decision-making, making
it more diverse. Specifically, we used two coverage metrics by Ma et al. [42], boundary coverage
(BoundCov) and strong activation coverage (SActCov), to evaluate the test suite diversity.

UpperCorner(X) = {𝑛 ∈ 𝑁 |∃𝑥 ∈ X : 𝑓𝑛 (𝑥) ∈ (ℎ𝑖𝑔ℎ𝑛, +∞)};
LowerCorner(X) = {𝑛 ∈ 𝑁 |∃𝑥 ∈ X : 𝑓𝑛 (𝑥) ∈ (−∞, 𝑙𝑜𝑤𝑛)};

(5)

Equation 5 defines the corner-case neuron of the NLP model 𝑓 (·), where X is the given test suite,
𝑁 is the number of neurons in model 𝑓 (·), 𝑓𝑛 (·) is the 𝑛𝑡ℎ neuron’s output, and ℎ𝑖𝑔ℎ𝑛 and 𝑙𝑜𝑤𝑛 are
the 𝑛𝑡ℎ neuron’s upper and lower output bounds on training dataset respectively. Equation 5 can be
interpreted as the collection of neurons that emit outputs beyond the model’s numerical boundary.

𝐵𝑜𝑢𝑛𝑑𝐶𝑜𝑣 (X) = |𝑈𝑝𝑝𝑒𝑟𝐶𝑜𝑟𝑛𝑒𝑟 (X)| + |𝐿𝑜𝑤𝑒𝑟𝐶𝑜𝑟𝑛𝑒𝑟 (X)|
2 × |𝑁 |

𝑆𝐴𝑐𝑡𝐶𝑜𝑣 (X) = |𝑈𝑝𝑝𝑒𝑟𝐶𝑜𝑟𝑛𝑒𝑟 (X)||𝑁 |

(6)

The definition of our neuron coverage metrics is shown in Equation 6, where BoundCov measures
the coverage of neurons that produce outputs exceeding the upper or lower bounds, and SActCov
measures the coverage of neurons that creates outputs exceeding the lower bound. Higher coverage
indicates the test suite is better for triggering the corner-case neurons, thus better diversity.
RQ2Metrics. To answerRQ2, we introduce three newmetrics: the label consistent rate (𝐿𝑎𝑏𝑒𝑙𝐶𝑜𝑛𝑠),
the linguistic capability consistent rate (𝐿𝐶𝑅𝑒𝑙𝐴𝑉𝐺), and the semantic consistent rate (𝐸𝑥𝑝𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐴𝑉𝐺).
The formal definitions of these metrics are listed in Equation 7.

𝐿𝑎𝑏𝑒𝑙𝐶𝑜𝑛𝑠 =
1

#𝑆𝑎𝑚𝑝𝑙𝑒
·
∑︁
𝑖

𝛿 (𝑙𝑎𝑏𝑒𝑙𝑆2𝐿𝐶𝑇 = 𝑙𝑎𝑏𝑒𝑙ℎ𝑢𝑚𝑎𝑛)

𝐿𝐶𝑅𝑒𝑙𝐴𝑉𝐺 =
1

#𝑆𝑎𝑚𝑝𝑙𝑒
·
∑︁
𝑖

𝑁𝑜𝑟𝑚(𝐿𝐶𝑅𝑒𝑙𝑖)

𝐸𝑥𝑝𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐴𝑉𝐺 =
1

#𝐸𝑥𝑝𝑆𝑎𝑚𝑝𝑙𝑒
·
∑︁
𝑖

𝑁𝑜𝑟𝑚(𝐸𝑥𝑝𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝑖)

(7)

𝐿𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑠 represents the percentage of the test cases that ALiCT and the participants (who
manually label the sentences) produce the same sentiment labels. A high value of this metric
indicates ALiCT generates test cases with correct labels. 𝐿𝐶𝑅𝑒𝑙𝐴𝑉𝐺 represents the average of
the normalized relevancy score between a sentence and its associated linguistic capability. A
higher score indicates the linguistic capability categorization by ALiCT is correct. 𝐸𝑥𝑝𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦𝐴𝑉𝐺

represents expansion validity, the average of the normalized validity score between expanded

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:15

sentence and its corresponding seed sentence. The higher score indicates higher semantic similarity
between them enough to use the semantic label of the seed sentence for the expanded sentence.
RQ3 and RQ4 Metrics. For RQ3and RQ4, our goal is to answer whether ALiCT is more effective
than other methods for generating test cases that can trigger incorrect predictions. Thus, we
measure three key metrics: (1) the number of test cases generated, (2) the number of failed test
cases, and (3) the failure rates of the generated test cases. Additionally, we report the number of
expanded test cases that failed but whose corresponding seed test cases passed (Pass-to-Fail).

4.3 Experimental Process

RQ1 Process. In the evaluation, we gathered diverse sets of test cases for both Self-BLEU and
syntactic diversity metrics. This approach was undertaken to optimize time efficiency to compute
the metric scores in the experiment and to illustrate how the metric scores trend across various
sample sizes. For the experiment, we randomly selected 200, 400, 600, 800, and 1000 test cases for
Self-BLEU, and 10000, 20000, 30000, 40000, and 50000 test cases for syntactic diversity from ALiCT’s
seed and expanded sentences. Notably, these test cases were chosen for sentiment analysis and hate
speech detection, and they may not be mutually exclusive. We then computed the median of Self-
BLEU and syntactic diversity scores over all linguistic capabilities. We repeated this computation
with different ALiCT seeds over 5 trials and reported the median.

We also evaluated ALiCT’s expansion phase by generating expanded sentences from CHECKLIST
and Hatecheck as seeds. We collected up to 200 randomly selected test cases from CHECKLIST
and Hatecheck and generated their expanded sentences. We computed the median of Self-BLEU
and syntactic diversity scores from the sentences over all linguistic capabilities. We repeated the
computation with different ALiCT seeds over 3 trials and reported the median over the 3 trials.
In addition, we compared Self-BLEU and syntactic diversity scores between ALiCT and the

text fuzzing baselines. First, we generate two groups of sentences from 100 randomly selected
ALiCT seeds for each sentiment analysis and hate speech detection using ALiCT expansion and
syntax-based text fuzzing baseline (MT-NLP). Self-BLEU and syntactic diversity scores of the two
groups of sentences were then compared. Second. we generate two groups of sentences from 50
randomly selected ALiCT seeds for sentiment analysis using ALiCT expansion and the adversarial
text generation baselines (Alzantot-attack, BERT-Attack and SememePSO-attack). Likewise, we
compared Self-BLEU and syntactic diversity scores of the two groups of sentences.
For the neuron coverage metric, we begin by feeding the training dataset of each NLP model

under test in order to compute the lower and upper bounds for each neuron. Then, we select
an equal number of test cases from both ALiCT and CHECKLIST to construct the test suite and
calculate the corresponding neuron coverage metrics.
RQ2 Process. To answerRQ2, we conduct a manual study to evaluate the three consistency metrics
listed in Equation (7) for the test suite generated by ALiCT. For each task, we randomly sampled
384 ALiCT seed sentences. The sample size for the seeds is determined to be statistically significant,
calculated with a 95% confidence level, a 5% margin of error, and a 50% population proportion based
on the actual size [6]. We divide these seeds to 10 sets (i.e., 37 to 40 sentences in each set) . For each
sampled seed sentence, we randomly obtain one of its expanded sentences. This forms the 10 sets of
sentences . We recruited 8 participants for each task; all are graduate students with no knowledge
about this work. Each of them was assigned a different set of sentences, and asked to provide three
scores for each sentence: (1) Relevancy score between sentence and its associated linguistic capability:
This score measures the correctness of ALiCT linguistic capability categorization. The scores are
discrete, ranging from 1 (“strongly not relevant”) to 5 (“strongly relevant”). (2) Sentiment score of the
sentence: this score measures the sentiment level of the sentence. It is also discrete, ranging from 1
to 5 representing “strongly negative” to “strongly positive” for sentiment analysis and “strongly

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:16 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

normal” to “strongly hateful” for hate speech detection, respectively. (3) Validity score of expanded
sentence: This score measures the validity of the use of the label of a seed sentence for its associated
ALiCT expanded sentence. The scores are discrete ranging from 1 (“strongly not consistent”) to
(“strongly consistent”).
RQ3 Process. We answer RQ3 by evaluating 5 models in Table 4 on test cases of ALiCT and
linguistic capability-based testing baselines, CHECKLIST and Hatecheck, for sentiment analysis
and hate speech detection, respectively. For each linguistic capability, we measure the number of
test cases generated by the baselines, ALiCT seeds and their expansions. We calculate the number
of failures and fail rate of the 5 models. In addition, we compare model performances on test
cases between ALiCT seeds and their expansions, and measure the number of Pass-to-Fail cases.
In particular, in contrast to the evaluation of other linguistic capabilities, where each test case
is assessed by running and matching the results with their corresponding labels, the linguistic
capability of fairness (LC11) is assessed by measuring the unbiased results of the model when
provided with the same input but with different identity groups while other linguistic capabilities
are evaluated by running each test case and matching the results and their labels. For each seed and
expanded test case, ALiCT initially obtained the result of the original test case and then retrieved
the results of test cases that are identical to the original but involve different identity groups. ALiCT
considers a test case as passed when the ratio of the changes from the original over all the results is
less than a threshold value and as failed otherwise. In this study, we set the threshold value as 0.1
RQ4 Process. We answer RQ4 by evaluating the GPT3.5 LLM using ALiCT and its baselines

(CHECKLIST and Hatecheck) for sentiment analysis and hate speech detection tasks across corre-
sponding linguistic capabilities [50]. Due to limited resources, we opt to sample the ALiCT seeds
and all corresponding expanded test cases. The sample size for the seeds is determined to be
statistically significant, calculated with a 95% confidence level, a 5% margin of error, and a 50%
population proportion based on the actual size [6]. Specifically, for each linguistic capability in
sentiment analysis, the sample sizes for ALiCT seeds range from 19 to 383, while the sample size
for CHECKLIST is 368. In the case of hate speech detection, we use sampled ALiCT seed test cases
with sizes ranging from 6 to 381, and we utilize all Hatecheck test cases due to their limited number.
We then calculate the number of failures and the failure rate of the GPT model on the sampled test
cases. Additionally, we compare the model performances on test cases between ALiCT seeds and
their expansions and measure the number of Pass-to-Fail cases.
Implementation Details. We obtained our reference CFG from the Penn Treebank corpus [45].
Additionally, we utilized SentiWordNet [3], which is a lexical sentiment resource, as the domain-
specific knowledge for sentence expansion. All experiments were conducted on a Ubuntu 14.04
server with three Intel Xeon E5-2660 v3 CPUs @2.60GHz, eight Nvidia 1080Ti GPUs, and 500GB of
RAM.

5 Experimental Results

This section presents the experimental results and the answers to the RQs. More results are available
at the ALiCT repository.2

5.1 RQ1: Diversity

Our results show that ALiCT produced test suites with significantly more diversity than the baselines
did.
Self-BLEU and Syntactic diversity.

Figure 4 compares the Self-BLEU and syntactic diversity (SD) scores of the test suite generated by
ALiCTwith those of CHECKLIST and Hatecheck. The x-axis shows the sample sizes of the generated
2https://github.com/csresearcher27/alict_artifact

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://github.com/csresearcher27/alict_artifact

Automated Testing Linguistic Capabilities of NLP Models 111:17

0.32
0.38 0.42 0.44 0.47

0.3
0.36 0.4 0.43 0.45

0.9 0.9 0.9 0.9 0.9

0.43 0.48 0.5 0.52 0.54
0.42 0.46 0.49 0.5 0.52

0.89
0.95 0.97 0.98 0.99

H
S

Se
lf-

BL
EU

0

0.5

1.0

SA
 S

el
f-B

LE
U

0

0.5

1.0

Sample Size
200 400 600 800 1000

4969 5055 5055 5055 50555044 5134 5134 5134 5134

181 181 181 181 181

2636

3260 3284 3284 3284

2722

3365 3392 3392 3392

123 123 123 123 123

H
S

SD

0

2000

4000

SA
 S

D

0

1000

2000

3000

Sample Size
10000 20000 30000 40000 50000

ALiCT ALiCT+EXP HateCheck CheckList

Fig. 4. Results of Self-BLEU (left) and Syntactic diversity (right) of ALiCT and capability-based testing
baselines for sentiment analysis and hate speech detection. Use of only ALiCT seed sentences and all ALiCT
sentences are denoted as SEED and SEED+EXP respectively.

0.894

0.762

0.895 0.905

CheckList CheckList+EXP HateChecker HateChecker+EXP

Se
lf-

BL
EU

 S
co

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

21

36

81
84

CheckList CheckList+EXP HateChecker HateChecker+EXP

SD
 S

co
re

s

0

10

20

30

40

50

60

70

80

90

Fig. 5. Results of Self-BLEU (left) and Syntactic diversity (right) between original sentences of capability-based
testing baselines and ALiCT generated sentences from the original sentences.

test suite, and the y-axis shows the metric scores. The left and right sub-figures display the median
Self-BLEU and syntactic diversity scores over all linguistic capabilities and 5 trials, respectively. The
results show that ALiCT’s test suite is more diverse than the baselines’, with significantly higher
syntactic diversity scores and significantly lower Self-BLEU scores. This highlights the advantages
of searching from a real-world dataset rather than relying on limited preset templates. Furthermore,
using expanded sentences in ALiCT decreases Self-BLEU scores by 0.013-0.0165 for sentiment
analysis and 0.0135-0.0155 for hate speech detection and increases syntactic diversity scores by
86.5-108 and 74.5-79 for sentiment analysis and hate speech detection respectively, demonstrating
the syntax-based expansion of ALiCT improves sentence diversity.
Figure 5 shows the Self-BLEU and syntactic diversity scores of test suites generated by two

baselines and their expanded versions using ALiCT. The x-axis shows the approach name, and the
y-axis shows the corresponding scores across all linguistic capabilities. The left sub-figure displays
the Self-BLEU scores, and the right sub-figure shows the syntactic diversity scores. The results
indicate that the expanded CHECKLIST and Hatecheck achieve better syntactic diversity scores than
their original versions, demonstrating the effectiveness of ALiCT’s syntax-based expansion module
in increasing the diversity of the generated test suite. Additionally, the expanded CHECKLIST
performs better in terms of Self-BLEU scores, while the expanded Hatecheck has comparable scores
to its original version. Further analysis suggests that the BERT model used for word suggestion has
been pretrained on a combination of BOOKCORPUS and English WIKIPEDIA, primarily exposed
to conventional English found in these datasets [41]. When contrasted with the standard English
present in these datasets, the process of suggesting words in the masked hate speech, along
with the grammatical distinctions apparent in texts from Hatecheck and the standard English

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:18 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

datasets, introduces a domain discrepancy. This mismatch in domains could have potentially had a
detrimental impact on the effectiveness of the mask word suggestion in ALiCT.

Table 5 compares ALiCT’s expanded sentences and MT-NLP for 100 randomly selected seeds. The
first column lists the NLP task, and the second column displays the approaches for text generation.
Columns 3-5 show the number of generated sentences, Self-BLEU, and syntactic diversity scores
over 5 sampling trials. We observe that ALiCT generates more sentences than MT-NLP for all tasks
and has higher Self-BLEU and syntactic diversity scores, demonstrating the effectiveness of ALiCT’s
syntax expansion in increasing test case diversity. MT-NLP failed to mutate some seed sentences
because it relies a small set of pre-determined words for mutation which cannot be applied to these
sentences.

Table 5. Comparison results against MT-NLP.

Task Approach #Gen Self-BLEU SD

SA
ALiCT 606 0.75± 0.01 338.8±12.03
MT-NLP 23 0.91± 0.0 96.0±0.0

HSD
ALiCT 800 0.69± 0.02 400.4±17.21
MT-NLP 211 0.79± 0.02 344.0±15.86

Table 6. Comparison results against adversarial attacks.

Approach #Gen Self-BLEU SD

ALiCT 323 0.435±0.005 262.0±2.739
Alzantot-attack 20 0.373±0.0 170.0±0.0
BERT-Attack 25 0.438±0.0 178.0±0.0
SememePSO-attack 25 0.411±0.0 178.0±0.0

Table 6 compares ALiCT’s expanded sentences with adversarial text generation baselines, as
discussed in Section 4.1. The first column shows the approach and the second column shows the
number of generated sentences from 50 randomly selected seeds. The third and fourth columns
show the Self-BLEU and syntactic diversity scores over 5 sampling trials respectively. We observe
that Alzantot et al. [1] has the lowest Self-BLEU scores, whereas ALiCT expansion achieves the
highest scores in the number of generated sentences and syntactic diversity, introducing various
syntax productions with comparable Self-BLEU score. The adversarial attack baselines are limited
to increase syntactic diversity as they rely on replacing words in the original sentences.
Neuron Coverage. Figure 6 shows the coverage results of ALiCT and CHECKLIST test cases.
The red and black line represents ALiCT and CHECKLIST coverage respectively. Each column in
Figure 6 represents the results for one sentiment analysis model. The first row is the BoundCov
results and the second row is the SActCov results. We made three observations from the results.
First, for all experimental settings (i.e., NLP model and coverage metric), ALiCT achieves higher
coverage than CHECKLIST. Recall that a higher coverage implies the test cases are more diverse
and do not have a similar statistical distribution to the model training data. As a result, a test
suite with greater coverage complements the model training data distribution (i.e. holdout data)
better. For example, for the first NLP model under test, ALiCT can achieve a higher coverage than
CHECKLIST with only half the number of test cases. This result confirms that ALiCT can generate

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:19

Our Approach CheckList

Fig. 6. Neuron coverage results of ALiCT and CHECKLIST.

more diverse test cases to complement the holdout dataset for testing NLP models. Second, as
the number of test cases increases, the test suite can achieve better coverage. Such observation is
intuitive. However, generating a more extensive test suite is not easy, particularly for CHECKLIST,
which is a manual word substitution-based approach. Third, for each NLP model, there is no fixed
relationship between BoundCov and SActCov. While a test suite may produce higher BoundCov
for some models, the same test suite may get higher SActCov for other NLP models. Recall that
BoundCov measures both the upper and lower corner neurons and SActCov measures only the upper
corner neurons. Such observation implies that the upper and lower corner neurons are distributed
unevenly, and measuring only one of them is not enough.

Answer to RQ1: ALiCT generated test suites that exhibited notably higher diversity compared
to the baseline methods.

5.2 RQ2: Consistency

Table 7. Consistency results.

Task Type #TC LabelCons LCRel ExpValidity

SA
SEED 384 0.862 0.926 -
EXP 384 0.859 0.923 0.934

HSD
SEED 382 0.814 0.891 -
EXP 382 0.822 0.89 0.948

Table 7 shows the results of our consistency study. The first column lists the NLP tasks, and the
second column distinguishes between seed and expanded test cases. The third column indicates
the number of test cases used. Columns 4-6 present the scores of label consistency, LC relevancy,
and expansion validity sentences, respectively. Our analysis shows that ALiCT generates test cases
with high label consistency, with scores of 0.862 and 0.859 for seed and expanded test cases,
respectively, for sentiment analysis and 0.814 and 0.822 for seed and expanded cases, respectively,
for hate speech detection, indicating that the test oracles constructed by ALiCT align with human
sentiment labeling most of the time.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:20 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

In the context of sentiment analysis, we conducted further analysis on the test cases used in the
manual study, where ALiCT failed to label them the same way as human participants did. This
subset consists of 106 test cases, comprising 53 seed test cases and 53 expanded test cases.
Among these 53 seed test cases, 30 were labeled differently from the human participants due to
ambiguity stemming from phrases in the search dataset, specifically SST in our experiment, which
was used for generating the seed test cases. For example, consider the sentence “The movie is so
thoughtlessly assembled.”. This phrase was found in the SST search dataset. While the sentiment
score of the sentence in the dataset is 0.73611, indicating it could be interpreted as somewhat
positive, it was labeled as positive using the 3-class labeling method. Hence, the presence of such
subtly negative sentiment introduces label inconsistencies between ALiCT and human judgment.
Ten out of the 53 seed test cases exhibit label inconsistencies arising from the seed sentence

being excessively long, making it challenging for participants to precisely discern its sentiment.
The lengthiness is due to the combination of two long sentences from the SST search dataset,
which were used to generate the seed sentence. Furthermore, four out of the 53 seed sentences is
grammatically incorrect, leading to a failure in label consistency. Moreover, label inconsistency can
also occur due to incorrectly labeled sentiment by participants for the seed sentences. Notably, all
53 expanded test cases are derived from the same 53 seed test cases, and any label inconsistency
observed in the expanded test cases can be attributed to the underlying reasons for the label
inconsistency in their respective seed test cases. Notably, all 53 expanded test cases are derived
from the same 53 seed test cases, and any label inconsistency observed in the expanded test cases
can be attributed to the underlying reasons for the label inconsistency in their respective seed test
cases.

Moreover, the results show high expansion validity scores of 0.934 for sentiment analysis and
0.97 for hate speech detection, indicating that ALiCT effectively preserves the semantic meaning of
seed sentences during the expansion process. The linguistic capability relevancy score is presented in
column 5 of Table 7. The result shows that ALiCT generates test cases that are correctly categorized
to the corresponding linguistic capabilities most of the time. The LC relevancy scores for the seed
and expanded sentences are 0.926 and 0.923 for sentiment analysis and 0.891 and 0.89 for hate
speech detection , respectively, achieving high agreement with human assessment. The fact that
the expanded sentences generated by ALiCT have the same level of linguistic capability relevancy
as the seed sentences demonstrates that the syntax-based sentence expansion retains the linguistic
capabilities. In the context of sentiment analysis, there are 104 test cases that did not achieve a
full LC relevancy score during the manual study. Out of these 104 cases, 52 are seed test cases,
and the remaining 52 are expanded test cases. Among the 52 seed test cases, 30 are not fully
LC-relevant due to the ambiguity of sentences from the SST search dataset, while the 7 are not
fully LC-relevant because it contains grammatical errors in the sentence structure. Note that the
52 expanded test cases are generated from the 52 seeds, and their LC irrelevancy stems from the
LC irrelevancy of their corresponding seed test cases.

Answer to RQ2: ALiCT demonstrates proficiency in generating test cases with a high level of
label consistency, ensuring the effective preservation of semantic meaning from seed sentences
throughout the expansion process. Moreover, it consistently and accurately categorizes these
test cases to the corresponding linguistic capabilities most of the time.

5.3 RQ3: Effectiveness

Our results show that ALiCT generates diverse test cases that expose more classification errors in NLP
models, outperforming the baselines.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:21

Table 8. Results of BERT-base, RoBERTa-base and DistilBERT-base sentiment analysis models on ALiCT
test cases using all seeds. CHECKLIST test cases are denoted as Cklst, and BERT-base, RoBERTa-base and
DistilBERT-base models are denoted as BERT, RoBERTa and dstBERT, respectively.

Linguistic capability Cklst
#TCs

ALiCT
#Seeds

ALiCT
#Exps

ALiCT/Cklst
#Fail

ALiCT/Cklst
Fail

rate[%]

ALiCT
#PassTo-

Fail

LC1: Short sentences with neutral adjectives and nouns 1,716 19 51
BERT: 60/1,330 BERT: 85.71/77.51 BERT: 9
RoBERTa: 55/1,391 RoBERTa: 78.57/81.06 RoBERTa: 2
dstBERT: 68/1,661 dstBERT: 97.14/96.79 dstBERT: 0

LC2: Short sentences with sentiment-laden adjectives 8,658 160 262
BERT: 25/26 BERT: 5.92/0.30 BERT: 5
RoBERTa: 39/139 RoBERTa: 9.24/1.61 RoBERTa: 14
dstBERT: 18/125 dstBERT: 4.27/1.44 dstBERT: 10

LC3: Sentiment change over time, present should prevail 8,000 75,159 343,214
BERT: 99,312/1,680 BERT: 23.74/21.00 BERT: 10,357
RoBERTa: 208,313/829 RoBERTa: 49.79/10.36 RoBERTa: 11,472
dstBERT: 262,994/2,532 dstBERT: 62.86/31.65 dstBERT: 9,808

LC4: Negated negative should be positive or neutral 6,786 67 503
BERT: 523/799 BERT: 91.75/11.77 BERT: 20
RoBERTa: 498/218 RoBERTa: 87.37/3.21 RoBERTa: 9
dstBERT: 494/734 dstBERT: 86.67/10.82 dstBERT: 6

LC5: Negated neutral should still be neutral 2,496 26 194
BERT: 207/2,427 BERT: 94.09/97.24 BERT: 11
RoBERTa: 204/2,304 RoBERTa: 92.73/92.31 RoBERTa: 6
dstBERT: 213/2,450 dstBERT: 96.82/98.16 dstBERT: 10

LC6: Negation of negative at the end, should be positive or
neutral

2,124 18,576 97,897
BERT: 116,049/1,871 BERT: 99.64/88.09 BERT: 67
RoBERTa: 115,676/445 RoBERTa: 99.32/20.95 RoBERTa: 90
dstBERT: 114,556/2,124 dstBERT: 98.35/100.00 dstBERT: 325

LC7: Negated positive with neutral content in the middle 1,000 24,328 184,328
BERT: 189,935/860 BERT: 91.03/86.00 BERT: 1,972
RoBERTa: 153,686/416 RoBERTa: 73.66/41.60 RoBERTa: 7,007
dstBERT: 175,323/865 dstBERT: 84.02/86.50 dstBERT: 5,003

LC8: Author sentiment is more important than of others 8,528 68,284 465,291
BERT: 152,009/3,741 BERT: 28.49/43.87 BERT: 8,878
RoBERTa: 105,152/2,693 RoBERTa: 19.71/31.58 RoBERTa: 8,487
dstBERT: 162,426/3,535 dstBERT: 30.44/41.45 dstBERT: 12,729

LC9: Parsing sentiment in (question, yes) form 7,644 15,465 102,203
BERT: 7,097/253 BERT: 6.03/3.31 BERT: 1,590
RoBERTa: 6,226/32 RoBERTa: 5.29/0.42 RoBERTa: 1,489
dstBERT: 5,470/52 dstBERT: 4.65/0.68 dstBERT: 1,151

LC10: Parsing sentiment in (question, no) form 7,644 15,483 102,214
BERT: 89,155/4,056 BERT: 75.75/53.06 BERT: 1,722
RoBERTa: 100,351/4,576 RoBERTa: 85.26/59.86 RoBERTa: 1,452
dstBERT: 111,874/6,440 dstBERT: 95.05/84.25 dstBERT: 575

LC11: Fairness: Switching identity group should not change
predictions 2,400 2,356 16,914

BERT: 2,338/1,752 BERT: 12.13/73 BERT: 408
RoBERTa: 2,007/1,337 RoBERTa: 10.41/55.7 RoBERTa: 463
dstBERT: 2,295/1,555 dstBERT: 11.90/64.79 dstBERT: 361

Number of Test Cases. Tables 8 and 9 present the results of the effectiveness metrics defined in
Section 4.2. In the column 3 and 4 of the table, ALiCT generates a significant number of test cases
for all linguistic capabilities, ranging from 70 (19+51) for LC1 to 533,575 (68,284+465,291) for LC8.
In the case of LC1, LC2, LC4, and LC5, ALiCT produces a lower quantity of test cases compared to
CHECKLIST. This discrepancy arises due to the scarcity of suitable seed text cases aligning with
the specifications of the linguistic capabilities within the search dataset. However, the syntax-based
sentence expansion phase generated 51 to 503 test cases. In Table 9, ALiCT generates more test
cases than Hatecheck for all linguistic capabilities except for LC11, indicating that ALiCT is more
useful in generating a sufficient number of test cases.
Fail Rate and Failed Cases. Columns 5 and 6 in Table 8 show that at least one model introduces a
higher number of failed test cases on ALiCT test cases than CHECKLIST in 8 linguistic capabilities,
and at least one model achieves a higher failure rate on ALiCT than on CHECKLIST in all other
linguistic capabilities (ranging from 4.27% to 99.64%) except for LC8 and LC11. In Table 9, we
observe that every linguistic capabilities for hate speech detection has a higher number of failed
test cases on ALiCT test cases than Hatecheck except for LC11, with the failure rate being higher
for at least one model in every linguistic capabilities except for LC1 and LC5 (ranging from 1.89% to
88.89%). Based on these findings, we conclude that ALiCT is more effective in generating test cases
to identify errors. The results show that ALiCT generates many test cases in the NLPmodels that fail

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:22 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

Table 9. Results of dehate-BERT and twitter-RoBERTa hate speech detection models on ALiCT test cases
using all seeds. Hatecheck test cases are denoted as Htck, and dehate-BERT and twitter-RoBERTa models are
denoted as BERT and RoBERTa respectively.

Linguistic capability Htck
#TCs

ALiCT
#Seeds

ALiCT
#Exps

ALiCT/Htck
#Fail

ALiCT/Htck
Fail rate[%]

ALiCT
#PassToFail

LC1: Hate expressed using slur 144 203 1,171
BERT: 435/108 BERT: 31.66/75.00 BERT: 16
RoBERTa: 26/56 RoBERTa: 1.89/38.89 RoBERTa: 12

LC2: Non-hateful use of slur 111 997 4,422
BERT: 3,835/18 BERT: 70.77/16.22 BERT: 29
RoBERTa: 4,484/68 RoBERTa: 82.75/61.26 RoBERTa: 70

LC3: Hate expressed using profanity 140 1,064 6,394
BERT: 5,869/98 BERT: 78.69/70.00 BERT: 51
RoBERTa: 1,115/93 RoBERTa: 14.95/66.43 RoBERTa: 69

LC4: Non-Hateful use of profanity 100 1,478 7,709
BERT: 1,683/1 BERT: 18.32/1.00 BERT: 49
RoBERTa: 5,160/1 RoBERTa: 56.17/1.00 RoBERTa: 120

LC5: Hate expressed through reference in subsequent clauses 140 11,968 43,641
BERT: 37,022/108 BERT: 66.58/77.14 BERT: 793
RoBERTa: 30,276/93 RoBERTa: 54.44/66.43 RoBERTa: 855

LC6: Hate expressed through reference in subsequent sentences 133 11,968 42,416
BERT: 35,958/101 BERT: 66.12/75.94 BERT: 783
RoBERTa: 31,195/69 RoBERTa: 57.36/51.88 RoBERTa: 721

LC7: Hate expressed using negated positive statement 140 39,783 220,483
BERT: 222,574/109 BERT: 85.52/77.86 BERT: 2,457
RoBERTa: 152,929/116 RoBERTa: 58.76/82.86 RoBERTa: 4,365

LC8: Non-hate expressed using negated hateful statement 133 17,796 133,756
BERT: 23,027/13 BERT: 15.19/9.77 BERT: 1,265
RoBERTa: 113,265/26 RoBERTa: 74.74/19.55 RoBERTa: 1,626

LC9: Hate phrased as a question 140 11,864 101,569
BERT: 98,879/107 BERT: 87.17/76.43 BERT: 961
RoBERTa: 33,589/123 RoBERTa: 29.61/87.86 RoBERTa: 1,305

LC10: Hate phrased as a opinion 133 11,864 87,996
BERT: 84,221/100 BERT: 84.34/75.19 BERT: 999
RoBERTa: 27,637/109 RoBERTa: 27.68/81.95 RoBERTa: 1,348

LC11: Neutral statements using protected group identifiers 126 6 12
BERT: 16/9 BERT: 88.89/7.14 BERT: 0
RoBERTa: 1/0 RoBERTa: 5.56/0.00 RoBERTa: 0

LC12: Positive statements using protected group identifiers 189 57 246
BERT: 151/23 BERT: 49.83/12.17 BERT: 7
RoBERTa: 73/16 RoBERTa: 24.09/8.47 RoBERTa: 1

LC13: Denouncements of hate that quote it 173 23,728 167,404
BERT: 20,511/17 BERT: 10.73/9.83 BERT: 1,229
RoBERTa: 117,788/5 RoBERTa: 61.63/2.89 RoBERTa: 2,440

LC14: Denouncements of hate that make direct reference to it 141 17,796 127,067
BERT: 17,060/4 BERT: 11.78/2.84 BERT: 1,070
RoBERTa: 100,848/7 RoBERTa: 69.62/4.96 RoBERTa: 1,594

to predict the correct labels, providing further qualitative test cases than baselines for finding errors.
Baselines generate test cases through word substitutions within manually created templates. This
approach restricts the semantic and structural variety within the generated test cases, ultimately
encompassing only a limited scope of expressions that align with the associated linguistic capability.
Note that all sentences in CHECKLIST for the fairness evaluation are generated from templates in
the form of “{male} is {identity_groups} {mask}.” and “{female} is {identity_groups} {mask}.” where
{male}, {identity_groups}, and {female} are placeholders for the lexicons for male, identity groups, and
female, respectively. Additionally, {mask} is the mask token intended to be suggested by the word
suggestion model based on these templates [58]. In contrast, ALiCT enhances diversity and delivers
more extensive test cases pertaining to the linguistic capability, thereby effectively covering a
broader range of corner cases within the text and contributing to a more number of unsuccessful
cases than the baselines.
Pass-to-Fail Cases. We observed that many test cases failed in the expanded set but not in their
corresponding seeds (as shown in the last column om Tables 8 and 9). This type of error case ranges
from 0 to 12,729 for sentiment analysis and from 0 to 4,365 for hate speech detection. These results
demonstrate that the syntax-based sentence expansion phase effectively introduces more diverse
sentence structures, which can potentially expose errors in NLP models that may not be evident in
the original seed test cases.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:23

Answer to RQ3: ALiCT excels in generating diverse test cases that effectively reveal a greater
number of classification errors in NLP models, surpassing the performance of baseline methods.

5.4 RQ4: Applicability to LLM

Table 10. Results of large lanauage model (GPT-3.5) on ALiCT test cases for sentiment analysis using all
seeds.

Linguistic capability Cklst
#TCs

ALiCT
#Seeds

ALiCT
#Exps

ALiCT/Cklst
#Fail

ALiCT/Cklst
Fail

rate[%]

ALiCT
#PassTo-

Fail

LC1: Short sentences with neutral adjectives and nouns 368 19 51 gpt-3.5 : 12/7 gpt-3.5 : 17.14/1.90 gpt-3.5 : 1
LC2: Short sentences with sentiment-laden adjectives 368 160 262 gpt-3.5 : 125/7 gpt-3.5 : 29.62/1.90 gpt-3.5 : 13
LC3: Sentiment change over time, present should prevail 368 383 2,612 gpt-3.5 : 1,172/181 gpt-3.5 : 39.13/49.18 gpt-3.5 : 117
LC4: Negated negative should be positive or neutral 368 67 503 gpt-3.5 : 422/9 gpt-3.5 : 74.04/2.45 gpt-3.5 : 18
LC5: Negated neutral should still be neutral 368 26 194 gpt-3.5 : 110/236 gpt-3.5 : 50.00/64.13 gpt-3.5 : 10
LC6: Negation of negative at the end, should be positive or neutral 368 377 2,099 gpt-3.5 : 1,509/12 gpt-3.5 : 60.95/3.26 gpt-3.5 : 75
LC7: Negated positive with neutral content in the middle 368 379 2,945 gpt-3.5 : 3,221/144 gpt-3.5 : 96.90/39.13 gpt-3.5 : 12
LC8: Author sentiment is more important than of others 368 383 2,625 gpt-3.5 : 1,361/221 gpt-3.5 : 45.25/60.05 gpt-3.5 : 139
LC9: Parsing sentiment in (question, yes) form 368 375 2,558 gpt-3.5 : 1,434/198 gpt-3.5 : 48.89/53.80 gpt-3.5 : 182
LC10: Parsing sentiment in (question, no) form 368 375 2,678 gpt-3.5 : 3,023/228 gpt-3.5 : 99.02/61.96 gpt-3.5 : 2

Table 11. Results of large lanauage model (GPT-3.5) on ALiCT test cases for hate speech detection using all
seeds.

Linguistic capability Htck #TCs
ALiCT
#Seeds

ALiCT
#Exps

ALiCT/Htck
#Fail

ALiCT/Htck
Fail

rate[%]

ALiCT
#PassTo-

Fail

LC1: Hate expressed using slur 144 203 1,171 gpt-3.5 : 9/1 gpt-3.5 : 0.66/0.69 gpt-3.5 : 9
LC2: Non-hateful use of slur 111 278 1,264 gpt-3.5 : 1,360/39 gpt-3.5 : 88.20/35.14 gpt-3.5 : 27
LC3: Hate expressed using profanity 140 283 1,720 gpt-3.5 : 1/0 gpt-3.5 : 0.05/0.00 gpt-3.5 : 1
LC4: Non-Hateful use of profanity 100 306 1,649 gpt-3.5 : 1,888/39 gpt-3.5 : 96.57/39.00 gpt-3.5 : 20
LC5: Hate expressed through reference in subsequent clauses 140 373 1,244 gpt-3.5 : 205/0 gpt-3.5 : 12.68/0.00 gpt-3.5 : 3
LC6: Hate expressed through reference in subsequent sentences 133 373 1,494 gpt-3.5 : 220/0 gpt-3.5 : 11.78/0.00 gpt-3.5 : 19
LC7: Hate expressed using negated positive statement 140 381 2,037 gpt-3.5 : 409/0 gpt-3.5 : 16.91/0.00 gpt-3.5 : 36
LC8: Non-hate expressed using negated hateful statement 133 377 3,140 gpt-3.5 : 3,454/5 gpt-3.5 : 98.21/3.76 gpt-3.5 : 14
LC9: Hate phrased as a question 140 373 3,098 gpt-3.5 : 3/0 gpt-3.5 : 0.09/0.00 gpt-3.5 : 3
LC10: Hate phrased as a opinion 133 372 2,862 gpt-3.5 : 4/0 gpt-3.5 : 0.12/0.00 gpt-3.5 : 1
LC11: Neutral statements using protected group identifiers 126 6 12 gpt-3.5 : 7/13 gpt-3.5 : 38.89/10.32 gpt-3.5 : 0
LC12: Positive statements using protected group identifiers 189 57 246 gpt-3.5 : 151/4 gpt-3.5 : 49.83/2.12 gpt-3.5 : 12
LC13: Denouncements of hate that quote it 173 379 2,717 gpt-3.5 : 3,085/163 gpt-3.5 : 99.64/94.22 gpt-3.5 : 3
LC14: Denouncements of hate that make direct reference to it 141 377 2,844 gpt-3.5 : 3,185/125 gpt-3.5 : 98.88/88.65 gpt-3.5 : 40

Tables 10 and 11 present the results of the evaluation of the LLM described in Section 4. Column
1 shows the description of each linguistic capability given the target task, columns 2 to 4 show
the number of sampled test cases of CHECKLIST baseline and ALiCT seed and its corresponding
expansions respectively. In addition, columns 5 and 6 shows the number of failed test cases and its
fail rate. Columns 5 and 6 show that the LLM introduces a higher number of failed test cases on
ALiCT test cases than CHECKLIST and Hatecheck over all linguistic capabilities except for one
linguistic capability for all tasks (LC5 for sentiment analysis and LC11 for hate speech detection).
Note that Hatecheck test cases even introduces no failures in 6 linguistic capabilities (LC 3, 5, 6,
7, 9, and 10). In addition, the LLM achieves a higher failure rate on ALiCT on CHECKLIST in 6
linguistic capabilities for sentiment analysis (ranging from 17.14% to 99.02%) and on Hatecheck in
13 linguistic capabilities for hate speech detection (ranging from 0.05% to 99.64%). Based on these

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:24 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

findings, we conclude that ALiCT is more effective in generating test cases to identify errors in the
recent LLM as well. The results show that ALiCT generates many test cases in the LLM that fail to
predict the correct labels, providing further qualitative test cases than baselines for finding errors.

Pass-to-Fail Cases. We observed that the LLM introduces many test cases failed in the expanded
set but not in their corresponding seeds (as shown in the last column in Tables 10 and 11). This
type of error case ranges from 1 to 182 for sentiment analysis and from 0 to 40 for hate speech
detection. These results demonstrate that the syntax-based sentence expansion phase effectively
introduces more diverse sentence structures, which can potentially expose errors even in LLM that
may not be evident in the original seed test cases.

Answer to RQ4: ALiCT establishes its relevance and applicability in evaluating LLM by
effectively uncovering a higher number of errors in the LLM, surpassing the performance of
baseline methods.

6 Application of ALiCT

In this section, we demonstrate how capability-based testing enabled by ALiCT can be used in
conjunction with explainable ML techniques to assist developers in identifying the root causes of
bugs in sentiment analysis models. Additionally, we showcase the implementation of ALiCT for
the evaluation of multilingual capabilities.
Experimental Process. Recall that ALiCT generates test cases by expanding one or more tokens
in the seed sentences. Still, it is unclear why expanding one or more tokens will cause the model to
produce misclassified results. We seek to help developers understand why such expansion will result
in the misclassification. Existing work [7, 21, 59] has demonstrated that the ML model prediction is
dominated by a minimal set of input features (i.e. tokens in input sentences).

Driven by this insightful intuition, we endeavor to pinpoint a masking template that retains only
a subset of input tokens which exerts a large influence on the model’s predictions. To achieve this,
we synthesize inputs using the masking template by substituting the tokens marked as masks,
denoted as 𝑇𝑥 , with randomly selected tokens. The expectation is that a newly synthesized input
should exhibit a notably high probability of upholding the original prediction 𝑥 , denoted as

𝑃 (𝑓 (G(𝑇𝑥)) = 𝑓 (𝑥)) ≥ 𝑃𝑡ℎ𝑟𝑒𝑠ℎ (8)

where 𝑓 (·) is the model under test,𝑇𝑥 is the identified template from input 𝑥 , G(·) is a generator that
replaces masked tokens with random tokens in a template, and 𝑃𝑡ℎ𝑟𝑒𝑠ℎ is a pre-defined threshold.

To construct the desired template denoted as 𝑇𝑥 , we follow Algorithm 2. We initiate this process
by evaluating the contribution score of each input token through the application of an established
interpretable machine learning technique [21] (Line 3). Subsequently, we commence with a complete
mask template, wherein all tokens are designated for masking (Line 4). This initial state fails to
satisfy Equation 8, given that the generator would generate entirely random inputs without any
discernible token. Next, our iterative procedure involves systematically shifting tokens from a
masked to a non-masked state, guided by the contribution scores of each token (Lines 9 − 11).
The goal is to achieve a template 𝑇𝑥 that conforms to Equation 8. In essence, during the first
iteration, we identify the token with the highest contribution score and designate it as non-masked,
thereby updating the template accordingly. With this modified template, we generate 1,000 random
instances by preserving the current mask configuration. Subsequently, we calculate the probability
that these instances yield the same prediction as the original input. If Equation 8 remains unsatisfied,
we proceed to the next iteration, marking the token with the second highest contribution score
as non-masked. This iterative process continues until Equation 8 is fulfilled. This iterative token

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:25

Algorithm 2 Template identification algorithm.
1: Input: Input sentence 𝑥 = [𝑡𝑘1, 𝑡𝑘2, · · · , 𝑡𝑘𝑛], NLP model 𝑓 (·), threshold 𝑃𝑡ℎ𝑟𝑒𝑠ℎ .
2: Output: A template 𝑇𝑥 .
3: 𝑆 = Compute_Contribution(x) {Compute each token’s contribution score with LEMNA}
4: 𝑇𝑥 = [𝑀𝐴𝑆𝐾,𝑀𝐴𝑆𝐾, · · · , 𝑀𝐴𝑆𝐾] {Initialize a complete mask template}
5: while True do
6: if Check_Templat e(𝑇𝑥) then
7: Break {If Equation 8 hold, end iteration}
8: else
9: 𝑖𝑛𝑑𝑒𝑥 = argmax(𝑆) {Select the token index with the highest scores}
10: 𝑇𝑥 [𝑖𝑛𝑑𝑒𝑥] = 𝑡𝑘𝑖𝑛𝑑𝑒𝑥 {Flip the mask to non-mask in the template}
11: 𝑆 [𝑖𝑛𝑑𝑒𝑥] = −𝑖𝑛𝑓 {To avoid repeat selection}
12: return 𝑇𝑥

selection process is designed to be greedy at each step, consistently opting for the token with the
highest contribution score. As a result of this sequential approach, the eventual template 𝑇𝑥 that
emerges retains the minimal number of tokens from the original input 𝑥 . Moreover, since the input
𝑥 is an incorrect prediction, the generated template 𝑇𝑥 is likely to produce misclassification (i.e.,
the probability of misclassification is larger than 𝑃𝑡ℎ𝑟𝑒𝑠ℎ).

Seed Sentence Generated Sentence

It is always enthralling.

Score Visualization

[MASK] [MASK] [MASK] enthralling.

It is always beyond enthralling.

[MASK] [MASK] [MASK] beyond [MASK] .

I used to disagree with saying that " This
is junk food cinema at its greasiest . ",
although now I like it.

[MASK] used to to disagree with [MASK] that
[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] at
its [MASK] . [MASK] [MASK] [MASK] I like it.

Sentence

Template

Prediction 1

I used to disagree with saying that " This
is literally junk food cinema at its
greasiest . ", although now I like it.

Sentence

Template

Prediction

0

[MASK] [MASK] [MASK] [MASK] [MASK] saying [MASK]
[MASK] This is literally junk food cinema [MASK]
[MASK] [MASK] . [MASK] although now [MASK]
[MASK] [MASK]

1 0

Seed Sentence
Generated Sentence

C
on

tri
bu

tio
n

Sc
or

e

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

Token Index

I

us
ed to

di
sa

gr
ee w
ith

sa
yi

ng th
at

Th
is is

lit
er

al
ly

ju
nk

fo
od

ci
ne

m
a at its

gr
ea

si
es

t

al
th

ou
gh

no
w I

lik
e it.

Co
ntr

ibu
tio

n S
co

re

−2

−1

0

1

2

3

4

5

6

Token Index

It is

alw
ay

s

be
yo

nd

en
thr

all
ing

.

Fig. 7. Visualization of the buggy reason of two ALiCT generated test cases.

Running Example. We illustrate the aforementioned process using a practical example. Let’s focus
on the second seed sentence in Figure 7, which is, “It is always enthralling.” To begin, we calculate
the contribution score for each token, as depicted in the Score Visualization column. Next, our
template initially consists of all “[MASK]” tokens. We then evaluate whether this template satisfies
Equation 8. If the equation does not hold, we replace the token with the highest contribution score
from the “[MASK]” tokens with its original counterpart. In this instance, that token is “enthralling.”
We reevaluate Equation 8. If it still does not satisfy the equation, we proceed to replace the token
with the second-highest contribution score from the “[MASK]” tokens with its original counterpart.
This iterative process continues until Equation 8 is met or until we exhaust all possibilities. In our
case, the final template becomes: “[MASK] [MASK] [MASK] [MASK] enthralling.” If we substitute
the “[MASK]” tokens with random tokens and generate a concrete sentence, this new sentence will
possess a probability greater than 𝑃𝑡ℎ𝑟𝑒𝑠ℎ of yielding the same prediction as the original sentence.
Case Study. We perform a case study to demonstrate the effectiveness of our methodology. Figure 7
shows the two examples of Pass-to-Fail cases. In the Seed Sentence column, details about the seed

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:26 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

sentence from the dataset are presented (e.g., sentence 𝑥 , identified template 𝑇𝑥 , and prediction
label). The Generated Sentence column provides information about the sentence generated by ALiCT.
The Score Visualization column illustrates the contribution score of each token in the sentence,
with blue bars representing the seed sentence and orange bars representing the generated sentence.
Modified tokens are emphasized with a yellow background, and identified templates are indicated
with red text.

From the results, we have the following observations: (1) The tokens introduced by ALiCT
can wield a significant impact, often taking precedence in influencing the model’s predictions.
This is exemplified in the second case within Figure 7, wherein ALiCT inserts the token beyond
into the sentence, consequently altering the model’s prediction. A thorough examination of the
visualization results underscores the significance of the beyond token, which commands a substantial
contribution score, surpassing even the cumulative effect of other tokens. Furthermore, the validity
of this phenomenon is corroborated by the identified template. As stated in Equation 8, the template
underscores that sentences adhering to its structure hold a greater than 90% likelihood of eliciting
an identical model prediction. This observation reaffirms that the model displays heightened
sensitivity towards specific tokens, possibly due to its training dataset’s inclination toward these
tokens. (2) Another notable observation pertains to instances where the newly introduced token
exhibits minimal individual contribution to the score. However, its presence serves to reshape
the distribution of contribution scores among other tokens. This phenomenon is exemplified by
the first case in Figure 7. Upon the inclusion of the token Literally, a notable shift occurs in the
contribution scores of the remaining tokens. Furthermore, the preeminent template identification
also undergoes significant alteration. Previously characterized by "... used to disagree with ..., ..., I
like it", the dominant template now transforms into "This is literally junk food cinema". Notably,
the phrase "I like it" no longer commands substantial influence. This shift subsequently prompts a
change in the model’s prediction. This observation stems from the intrinsic nonlinearity of machine
learning models. Even the most minor perturbation can propagate throughout the system, causing
a shift in the impact exerted by other tokens that play a role in the model’s prediction. Furthermore,
ALiCT has the capability to generate valuable test cases that effectively provoke such changes.

7 Threats to Validity

Internal. We have identified internal concerns originating from the following three aspects.
First, we implemented generative rules with the intention of amalgamating phrases sourced

from the search dataset. The incorporation of specific user-defined phrases into these generative
rules may unintentionally result in incomplete coverage of the entire test case distribution for the
linguistic capability. To address this potential issue, we proactively tackle it by encompassing the
full spectrum of test case diversity, leveraging all available phrases from the search dataset. This
strategy is based on the assumption that the search dataset accurately mirrors real-world scenarios.
By adopting this approach, we aim to minimize the gap between the comprehensive distribution of
test cases and those generated by our method, simultaneously enhancing semantic and structural
diversity while ensuring alignment between the test cases and the linguistic capability.
Second, in order to ensure consistent evaluation, we assigned two participants to label each

sentence, with each participant receiving a distinct label. However, this approach introduces the
risk of participants mislabeling certain sentences. To mitigate this potential threat, we implemented
two measures: first, we randomly selected the sentences assigned to each participant, and second,
we tasked the participants with performing each labeling task, aggregating the labels provided
by the two participants. Consequently, in accordance with the Law of Large Numbers [15], our
results can attain probabilistic correctness when dealing with a large number of randomly selected
sentences.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:27

Lastly, the reference corpus and word sentiment utilized in our approach may not be fully
representative of all English grammatical structures and word sentiments. To address this potential
limitation, we opted for a widely-used dataset in the NLP domain [30]. Specifically, we utilized the
Penn Treebank [45] dataset for the reference corpus due to its diversity, derived from 98,732 stories
from the Wall Street Journal for syntactic annotation. Additionally, we employed the SentiWordNet
for the word sentiment dataset, choosing it for its extensive usage in various research projects and
licensing to over 300 research groups [3].
External. The external threats to validity come from the following aspects: First, ALiCT is both
implemented and evaluated based on a specific set of linguistic capabilities, as outlined in Tables 2
and 3. However, there is a potential risk that this focused evaluation may limit the generalizability of
ALiCT. To address this concern, we are undertaking the following measures: (1) We choose a diverse
set of linguistic capabilities for evaluation. These selected capabilities span various applications
such as sentiment analysis, hate speech detection, and others (e.g., fairness). We ensure diversity
not only in terms of application but also in usage and complexity. (2) The linguistic capabilities
selected for evaluation are not arbitrary; rather, they are well-established and widely used in
existing research. This deliberate choice aims to ensure that the evaluation of ALiCT is grounded
in linguistic tasks that have proven relevance and applicability in the broader research community.
Second, the evaluation subjects employed in our experiments exclusively consist of English

models, potentially limiting the generalizability of ALiCT in multilingual settings. To mitigate
this limitation, we are implementing the following strategies: (1) In the design of ALiCT, it is
important to note that no English-specific knowledge is mandated. Consequently, in theory, ALiCT
possesses the potential for generalization to multilingual settings, as it does not rely on language-
specific features during the design phase. (2) Although ALiCT utilizes a BERT-base model for
word suggestion in sentence expansion, we note that BERT-base is trained on unlabeled English
sentences and may not be optimal for expanding sentences in other languages. However, to enhance
multilingual adaptability, the BERT-base model can be substituted with bert-base-multilingual.
This alternative model has been trained with data from 104 languages, sourced from the largest
Wikipedia, thereby broadening its linguistic capabilities.

Finally, we have chosen Neuron Coverage as one of our evaluation metrics to assess the diversity
of the generated test inputs. However, certain existing studies have cast doubts on the efficacy
of neuron coverage as an objective function for generating adversarial examples [23, 75, 76]. It is
crucial to note that these studies do not outright dismiss the effectiveness of Neuron Coverage as a
metric for measuring diversity. For instance, [75] found that indiscriminately increasing Neuron
Coverage can have a detrimental effect, resulting in the production of less natural inputs and
introducing bias in output distribution. In our evaluation, we consciously avoid using coverage as
the primary objective in our approach to generating test inputs. Consequently, the concern that
test inputs generated by our tool may be less natural does not apply. Furthermore, [76] observed
that Neuron Coverage may not be effective in adversarial settings. It is crucial to highlight that our
diversity evaluation is not conducted in adversarial settings; we do not iteratively query the model
until errors are found. Thus, our choice of Neuron Coverage could still represent the diversity of
the generated test suite to some degree.

8 Related Work

In addition to the capability-based testing works discussed in Section 2, we review other related
works in this section.
NLP Algorithms & Applications. Deep neural networks (DNNs) have significantly improved
various natural language processing (NLP) applications, including reading comprehension, hate
speech detection, and machine translation. For instance, word embeddings [31, 47, 53] distributes

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

111:28 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

the semantic of words into numeric vectors, which are then utilized to train neural networks for
classification tasks. Meanwhile, Seq2Seq [20, 64, 68] presents an encoder-decoder neural network
architecture that has been widely adopted for modeling the sequence generation task, particularly
in machine translation and question answering applications. In addition, Google [73] has introduced
the attention mechanism, namely transformer, can greatly enhance the accuracy of the generated
texts. Accordingly, self-supervised learning paradigm has been applied to the transformer, and it
is used for pre-training language model before being fine-tuned or used for specific downstream
tasks [14, 55]. Pre-training becomes a crucial step in creating powerful and effective NLP models.

In recent times, it has been observed that scaling pre-trained language models can significantly
enhance the model’s performance on downstream tasks. As a result, numerous large language
models have been introduced, and these models have exhibited remarkable abilities in solving a
wide array of complex tasks. [11, 56, 70]
Machine Learning Testing & NLP Testing. Machine learning has shown great potential in
various real-world applications. Nonetheless, despite the high accuracy rates of ML models, there
have been instances where ML models can generate inferior results, leading to fatal accidents
[35, 36]. Therefore, researchers have developed a series of techniques to test ML-based applications.
For example, DeepExplore [52] utilizes neuron coverage to partition the input space. It assumes
that inputs that share similar neuron coverage belong to the same class. Ma et al. assess the neural
coverage of activated neurons in a DNN by drawing an analogy to code branches in traditional
software testing [42, 74]. Tian et al. [69] finds erroneous behaviour of DNN by generating test
inputs that maxmize the neural coverage of activated neurons in the domain of autonomous driving.
DeepMutation [43] proposes the mutation testing framework for DNNs. It introduces a set of
fault injection operators to perturbate the decision logic of a DNN. DeepStellar [16] relies on state
modeling and presents a series of metrics for RNNs. These metrics are used for testing and detecting
adversarial examples. AsFault [19] evaluates self-driving car software by automatically genearating
virtual scenario and searching their parameters towards safety-critical scenarios. Kim et al [32]
measures the difference in deep learning system’s behaviour between an input and the training
data to measure the surprise of the input based on the training data. CRADLE [54] concentrates on
the localization of bugs in deep learning software libraries. In addition, Simin et al [8, 10] enables
energy efficient performance testing for DNNs such with respect to latency degradation and energy
consumption degradation.

In recent years, researchers have investigated the occurrence of bugs produced by neural networks
in NLP applications, inspired by the work on adversarial examples in computer vision. TestBugger
[37] proposes a gradient-guided approach to generate test inputs for identifying bugs in NLP
models used for classification tasks. Rel et al. [57] geneartes adversarial input text by replacing
input words with synonyms searching from word saliency and classification probability. Zang et
al. [79] introduces word-level adversarial attack model for text classificaioon by sememe-based
word substitution and a specific searching algorithm. Li et al [39] utilizes BERT to identify semantic-
preserving word substitutes for adversarial attacking words in the input text. Ebrahibi et al [17, 18]
provides input text transformation operations for character-level NLP models. Zou et al [84]
generates adversarial examples to attack neural machine translation model using reinforcement
learning. In addition to evaluating the robustness of NLP applications through NLP model attacks,
various other perspectives of these applications are also assessed for their practical utility. Neural
machine translationmodels are evaluated by generating adversarial examples [81, 84] andmeasuring
metamorphic relations between input and translation results [22, 24, 25, 67]. Chen et al [9] focuses on
generating test inputs that can expose energy efficiengy degradation of neural machine translation.
In addition, Ma et al [44] assess fairness violations by perturbing human-related noun words and
measuring the discrepancy in the model’s outputs between the perturbed texts. Our approach

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

Automated Testing Linguistic Capabilities of NLP Models 111:29

differs from existing work in that we concentrate on testing the linguistic capabilities of NLP
applications in an automatic manner, a topic that has yet to be explored.

9 Conclusions

This paper introduces ALiCT, a tool designed to automate the process of generating test cases
for NLP models. Through the utilization of linguistic capability specification-driven structural
predicates and generative rules, it can automatically create seed test cases. ALiCT also employs
syntax-based expansion to further broaden the array of syntactic structures originating from the
seed test cases. This ensures a strong alignment between the generated test cases and their linguistic
capabilities, labels, and semantics and enhances the diversity of the seed test cases.
We assess the efficacy of ALiCT across two prominent NLP tasks. Our experiments show that,

when measured using Self-BLEU and syntactic diversity, the test cases generated by ALiCT exhibit
a diversity increase of at least 190% in semantic and 2213% more diverse in syntactic aspects
compared to those generated by state-of-the-art techniques. This substantial diversity improvement
suggests that ALiCT’s test cases enhance neuron coverage and introduce a greater number of model
failures in 22 out of 25 linguistic capabilities over the two NLP tasks. Furthermore, we performed
a study to validate that ALiCT consistently generates test cases with accurately aligned labels,
corresponding linguistic capabilities, and the semantic context of the expanded test cases. We
conducted a thorough analysis of cases that induce failures, uncovering the underlying causes
of these issues. Additionally, we demonstrated that ALiCT is applicable for evaluating LLM over
linguistic capabilities. This validates the correctness and practical value of ALiCT in facilitating
model evaluation.
Looking ahead, there is a need for additional research stemming from this study, particularly

in the domain of linguistic capability specification analysis. First, we anticipate that assessing
linguistic capability through an NLP task could pinpoint specific aspects of erroneous behavior
of NLP models, ultimately aiding in their debugging. Additionally, the automation of linguistic
capability specification generation could significantly facilitate the generation of seed test cases
based on natural language descriptions.

Acknowledgment

This work was partly supported by NSF grants CCF-2047682, CCF-2008905, CCF-2146443, CNS-
2235137, CPS-2230969, CNS-2300525, CNS-2343653, CNS-2312397, the NSF graduate research
fellowship program, and Eugene McDermott Graduate Fellowship 202006.

References
[1] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-JhangHo,Mani Srivastava, and Kai-Wei Chang. 2018. Generating

Natural Language Adversarial Examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Brussels, Belgium, 2890–2896. https://doi.org/10.18653/v1/D18-
1316

[2] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Ferdian Thung, and David Lo. 2022.
BiasFinder: Metamorphic Test Generation to Uncover Bias for Sentiment Analysis Systems. IEEE Transactions on
Software Engineering 48, 12 (2022), 5087–5101. https://doi.org/10.1109/TSE.2021.3136169

[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. SentiWordNet 3.0: An Enhanced Lexical Resource for
Sentiment Analysis and Opinion Mining. In Proceedings of the Seventh International Conference on Language Resources
and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta, Malta. http://www.lrec-
conf.org/proceedings/lrec2010/pdf/769_Paper.pdf

[4] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao. 2021. Cats are not fish: deep
learning testing calls for out-of-distribution awareness. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing Machinery, New
York, NY, USA, 1041–1052. https://doi.org/10.1145/3324884.3416609

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.1109/TSE.2021.3136169
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
https://doi.org/10.1145/3324884.3416609

111:30 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

[5] Som S Biswas. 2023. Potential use of chat gpt in global warming. Annals of biomedical engineering 51, 6 (2023),
1126–1127.

[6] Calculator.net. 2023. Sample Size Calculator. https://www.calculator.net/sample-size-calculator.html
[7] Simin Chen, Soroush Bateni, Sampath Grandhi, Xiaodi Li, Cong Liu, and Wei Yang. 2020. DENAS: Automated Rule

Generation by Knowledge Extraction from Neural Networks. Association for Computing Machinery, New York, NY,
USA, 813–825. https://doi.org/10.1145/3368089.3409733

[8] Simin Chen, Mirazul Haque, Cong Liu, and Wei Yang. 2022. DeepPerform: An Efficient Approach for Performance
Testing of Resource-Constrained Neural Networks. In 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–13.

[9] Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and Wei Yang. 2022. NMTSloth: understanding and testing efficiency
degradation of neural machine translation systems. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1148–1160.

[10] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei Yang. 2022. NICGSlowDown: Evaluating the Efficiency
Robustness of Neural Image Caption Generation Models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 15365–15374.

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson,
Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff
Dean, Slav Petrov, and Noah Fiedel. 2023. PaLM: Scaling Language Modeling with Pathways. J. Mach. Learn. Res. 24
(2023), 240:1–240:113. http://jmlr.org/papers/v24/22-1144.html

[12] Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. 2022. Self-conditioning Pre-Trained Language Models.
In Proceedings of the 39th International Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR,
4455–4473. https://proceedings.mlr.press/v162/cuadros22a.html

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, 4171–4186. https://doi.org/10.18653/V1/N19-1423

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, 4171–4186. https://doi.org/10.18653/V1/N19-1423

[15] W. J. Dixon and Frank J. Massey. 1951. Introduction to statistical analysis / by Wilfred J. Dixon and Frank J. Massey, Jr.
McGraw-Hill N.Y. x, 370p. : pages.

[16] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deepstellar: Model-based quantitative
analysis of stateful deep learning systems. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 477–487.

[17] Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018. On Adversarial Examples for Character-Level Neural Ma-
chine Translation. In Proceedings of the 27th International Conference on Computational Linguistics. Association for
Computational Linguistics, Santa Fe, New Mexico, USA, 653–663. https://aclanthology.org/C18-1055

[18] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-Box Adversarial Examples for Text
Classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics, Melbourne, Australia, 31–36. https://doi.org/10.18653/v1/P18-2006

[19] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-driving cars with search-based
procedural content generation. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 318–328.

[20] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. 2017. Convolutional sequence to
sequence learning. In International conference on machine learning. PMLR, 1243–1252.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://www.calculator.net/sample-size-calculator.html
https://doi.org/10.1145/3368089.3409733
http://jmlr.org/papers/v24/22-1144.html
https://proceedings.mlr.press/v162/cuadros22a.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://aclanthology.org/C18-1055
https://doi.org/10.18653/v1/P18-2006

Automated Testing Linguistic Capabilities of NLP Models 111:31

[21] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. Lemna: Explaining deep learning
based security applications. In proceedings of the 2018 ACM SIGSAC conference on computer and communications security.
364–379.

[22] Shashij Gupta, Pinjia He, Clara Meister, and Zhendong Su. 2020. Machine translation testing via pathological invariance.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 863–875.

[23] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. 2020. Is neuron
coverage a meaningful measure for testing deep neural networks? Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (2020).
https://api.semanticscholar.org/CorpusID:210146632

[24] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing for machine translation. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE, 961–973.

[25] Pinjia He, Clara Meister, and Zhendong Su. 2021. Testing machine translation via referential transparency. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 410–422.

[26] Chaitra V. Hegde and Shrikumar Patil. 2020. Unsupervised Paraphrase Generation using Pre-trained Language Models.
CoRR abs/2006.05477 (2020). arXiv:2006.05477 https://arxiv.org/abs/2006.05477

[27] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing. (2017). To appear.

[28] HuggingFace. 2022. HuggingFace. https://huggingface.co
[29] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime: mutation testing of deep learning

systems based on real faults. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, Denmark, July 11-17, 2021, Cristian Cadar and Xiangyu Zhang (Eds.). ACM, 67–78. https:
//doi.org/10.1145/3460319.3464825

[30] Mujtaba Husnain, Malik Muhammad Saad Missen, Nadeem Akhtar, Mickaël Coustaty, Shahzad Mumtaz, and VB
Prasath. 2021. A systematic study on the role of SentiWordNet in opinion mining. Frontiers of Computer Science 15, 4
(2021), 1–19.

[31] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomás Mikolov. 2017. Bag of Tricks for Efficient Text Classifica-
tion. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers, Mirella Lapata, Phil Blunsom, and Alexander Koller
(Eds.). Association for Computational Linguistics, 427–431. https://doi.org/10.18653/V1/E17-2068

[32] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 1039–1049.

[33] Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multilingual Constituency Parsing with Self-Attention and Pre-
Training. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 3499–3505. https://doi.org/10.18653/v1/P19-1340

[34] Nikita Kitaev and Dan Klein. 2018. Constituency Parsing with a Self-Attentive Encoder. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Melbourne, Australia, 2676–2686. https://doi.org/10.18653/v1/P18-1249

[35] Fred Lambert. 2016. Understanding the fatal tesla accident on autopilot and the nhtsa probe. Electrek, July 1 (2016).
[36] Sam Levin. 2018. Tesla fatal crash:’autopilot’mode sped up car before driver killed, report finds. The Guardian 8 (2018).
[37] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBugger: Generating Adversarial Text Against

Real-world Applications. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019. The Internet Society. https://www.ndss-symposium.org/ndss-paper/textbugger-
generating-adversarial-text-against-real-world-applications/

[38] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial Attack
Against BERT Using BERT. CoRR abs/2004.09984 (2020). arXiv:2004.09984 https://arxiv.org/abs/2004.09984

[39] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial Attack
Against BERT Using BERT. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Online, 6193–6202. https://doi.org/10.18653/v1/2020.emnlp-
main.500

[40] Alexander Ligthart, Cagatay Catal, and Bedir Tekinerdogan. 2021. Systematic reviews in sentiment analysis: a tertiary
study. Artificial Intelligence Review 54 (2021), 4997 – 5053. https://api.semanticscholar.org/CorpusID:233769825

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692

[42] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al.
2018. Deepgauge: Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://api.semanticscholar.org/CorpusID:210146632
https://arxiv.org/abs/2006.05477
https://arxiv.org/abs/2006.05477
https://huggingface.co
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.18653/V1/E17-2068
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://arxiv.org/abs/2004.09984
https://arxiv.org/abs/2004.09984
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://api.semanticscholar.org/CorpusID:233769825
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

111:32 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

International Conference on Automated Software Engineering. 120–131.
[43] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al.

2018. Deepmutation: Mutation testing of deep learning systems. In 2018 IEEE 29th international symposium on software
reliability engineering (ISSRE). IEEE, 100–111.

[44] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certified Mitigation of Fairness Violations
in NLP Models. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
Christian Bessiere (Ed.). International Joint Conferences on Artificial Intelligence Organization, 458–465. https:
//doi.org/10.24963/ijcai.2020/64 Main track.

[45] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a Large Annotated Corpus of
English: The Penn Treebank. Comput. Linguist. 19, 2 (jun 1993), 313–330.

[46] Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee. 2021.
HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 14867–14875.

[47] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in
Vector Space. In 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1301.3781

[48] John X. Morris, Eli Lifland, Jin Yong Yoo, and Yanjun Qi. 2020. TextAttack: A Framework for Adversarial Attacks in
Natural Language Processing. CoRR abs/2005.05909 (2020). arXiv:2005.05909 https://arxiv.org/abs/2005.05909

[49] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https://doi.org/10.48550/ARXIV.2303.08774
arXiv:2303.08774

[50] OpenAI. 2023. GPT model documentation. https://platform.openai.com/docs/introduction
[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method for Automatic Evaluation

of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Philadelphia, Pennsylvania, USA, 311–318. https://doi.org/10.3115/1073083.
1073135

[52] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM. https://doi.org/10.1145/3132747.3132785

[53] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.

[54] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE: cross-backend validation to detect and
localize bugs in deep learning libraries. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 1027–1038.

[55] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by
generative pre-training. (2018).

[56] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are
unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

[57] Shuhuai Ren, Yihe Deng, KunHe, andWanxiang Che. 2019. Generating Natural Language Adversarial Examples through
Probability Weighted Word Saliency. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Florence, Italy, 1085–1097. https://doi.org/10.18653/v1/P19-1103

[58] Marco Tulio Ribeiro. 2023. CHECKLIST github repository. https://github.com/marcotcr/checklist/tree/master
[59] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i trust you?" Explaining the predictions

of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 1135–1144.

[60] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond Accuracy: Behavioral Testing
of NLP models with CheckList. In Association for Computational Linguistics (ACL).

[61] Paul Röttger, Haitham Seelawi, Debora Nozza, Zeerak Talat, and Bertie Vidgen. 2022. Multilingual HateCheck:
Functional Tests for Multilingual Hate Speech Detection Models. In Proceedings of the Sixth Workshop on Online Abuse
and Harms (WOAH), Kanika Narang, Aida Mostafazadeh Davani, Lambert Mathias, Bertie Vidgen, and Zeerak Talat
(Eds.). Association for Computational Linguistics, Seattle, Washington (Hybrid), 154–169. https://doi.org/10.18653/v1/
2022.woah-1.15

[62] Paul Röttger, Bertie Vidgen, Dong Nguyen, ZeerakWaseem, HelenMargetts, and Janet Pierrehumbert. 2021. HateCheck:
Functional Tests for Hate Speech Detection Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,
Online, 41–58. https://doi.org/10.18653/v1/2021.acl-long.4

[63] Anna Schmidt and Michael Wiegand. 2017. A Survey on Hate Speech Detection using Natural Language Processing.
In Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media. Association for

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.24963/ijcai.2020/64
https://doi.org/10.24963/ijcai.2020/64
http://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2005.05909
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/introduction
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.18653/v1/P19-1103
https://github.com/marcotcr/checklist/tree/master
https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2021.acl-long.4

Automated Testing Linguistic Capabilities of NLP Models 111:33

Computational Linguistics, Valencia, Spain, 1–10. https://doi.org/10.18653/v1/W17-1101
[64] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. IEEE transactions on Signal

Processing 45, 11 (1997), 2673–2681.
[65] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts.

2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle,
Washington, USA, 1631–1642. https://aclanthology.org/D13-1170

[66] Ezekiel O. Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. 2022. Astraea: Grammar-Based Fairness Testing.
IEEE Trans. Software Eng. 48, 12 (2022), 5188–5211. https://doi.org/10.1109/TSE.2022.3141758

[67] Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020. Automatic testing and improvement of
machine translation. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 974–985.

[68] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. Advances in
neural information processing systems 27 (2014).

[69] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated testing of deep-neural-network-
driven autonomous cars. In Proceedings of the 40th international conference on software engineering. 303–314.

[70] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. CoRR abs/2302.13971 (2023). https:
//doi.org/10.48550/ARXIV.2302.13971 arXiv:2302.13971

[71] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. 2018. Automated directed fairness testing. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM, 98–108. https://doi.org/10.
1145/3238147.3238165

[72] Sakshi Udeshi and Sudipta Chattopadhyay. 2021. Grammar Based Directed Testing of Machine Learning Systems.
IEEE Trans. Software Eng. 47, 11 (2021), 2487–2503. https://doi.org/10.1109/TSE.2019.2953066

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).

[74] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and
Simon See. 2019. Deephunter: a coverage-guided fuzz testing framework for deep neural networks. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 146–157.

[75] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu Zhang. [n. d.]. Correlations
between Deep Neural Network Model Coverage Criteria and Model Quality. Proceedings of the 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), ([n. d.]).
https://doi.org/10.1145/3368089.3409671

[76] Zhou Yang, Jieke Shi, Muhammad Hilmi Asyrofi, and David Lo. 2022. Revisiting Neuron Coverage Metrics and Quality
of Deep Neural Networks. In IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER
2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 408–419. https://doi.org/10.1109/SANER53432.2022.00056

[77] Ping Yu, Yang Zhao, Chunyuan Li, and Changyou Chen. 2021. Rethinking Sentiment Style Transfer. In Findings of the
Association for Computational Linguistics: EMNLP 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, Punta Cana, Dominican Republic, 1569–1582.
https://doi.org/10.18653/v1/2021.findings-emnlp.135

[78] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun. 2020. Word-
level Textual Adversarial Attacking as Combinatorial Optimization. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6066–6080. https:
//doi.org/10.18653/v1/2020.acl-main.540

[79] Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun. 2020. Word-
level Textual Adversarial Attacking as Combinatorial Optimization. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational Linguistics, Online, 6066–6080. https:
//doi.org/10.18653/v1/2020.acl-main.540

[80] Ruiyi Zhang, Changyou Chen, Zhe Gan, Zheng Wen, Wenlin Wang, and Lawrence Carin. 2020. Nested-Wasserstein
Self-Imitation Learning for Sequence Generation. In The 23rd International Conference on Artificial Intelligence and
Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy] (Proceedings of Machine Learning Research,
Vol. 108), Silvia Chiappa and Roberto Calandra (Eds.). PMLR, 422–433. http://proceedings.mlr.press/v108/zhang20b.html

[81] Xinze Zhang, Junzhe Zhang, Zhenhua Chen, and Kun He. 2021. Crafting Adversarial Examples for Neural Machine
Translation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational
Linguistics, Online, 1967–1977. https://doi.org/10.18653/v1/2021.acl-long.153

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.18653/v1/W17-1101
https://aclanthology.org/D13-1170
https://doi.org/10.1109/TSE.2022.3141758
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1109/TSE.2019.2953066
https://doi.org/10.1145/3368089.3409671
https://doi.org/10.1109/SANER53432.2022.00056
https://doi.org/10.18653/v1/2021.findings-emnlp.135
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
http://proceedings.mlr.press/v108/zhang20b.html
https://doi.org/10.18653/v1/2021.acl-long.153

111:34 Jaeseong Lee, Simin Chen, Austin Mordahl, Cong Liu, Wei Yang, and Shiyi Wei

[82] Binggui Zhou, Guanghua Yang, Zheng Shi, and Shaodan Ma. 2022. Natural language processing for smart healthcare.
IEEE Reviews in Biomedical Engineering (2022).

[83] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, JunWang, and Yong Yu. 2018. Texygen: A Benchmarking
Platform for Text Generation Models. In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). Association for Computing Machinery, New York, NY, USA,
1097–1100. https://doi.org/10.1145/3209978.3210080

[84] Wei Zou, Shujian Huang, Jun Xie, Xinyu Dai, and Jiajun Chen. 2020. A Reinforced Generation of Adversarial Examples
for Neural Machine Translation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 3486–3497.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.1145/3209978.3210080

