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ABSTRACT

Static analysis is an important tool for detecting bugs in real-world

software. The advent of numerous analysis algorithms with their

own tradeo�s has led to the proliferation of con�gurable static anal-

ysis tools, but their complex, undertested con�guration spaces are

obstacles to their widespread adoption. To improve the reliability

of these tools, my research focuses on developing new approaches

to automatically test and debug them. First, I describe an empirical

study that helps to understand the performance and behavior of

con�gurable taint analysis tools for Android. The �ndings of this

study motivate the development of ECSTATIC, a framework for

testing and debugging that goes beyond taint analysis to test any

con�gurable static analysis tool. The next steps for this research

involve the automatic creation of real-world benchmarks for static

analysis with associated ground truths and analysis features.
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1 INTRODUCTION

Software in�uences nearly every aspect of modern life. As software

becomes more complex and ubiquitous, the risk posed by bugs

becomes evermore severe. Thus, techniques to detect and �x bugs

are critical. Software testing is themost common technique to detect

bugs; however, it is not exhaustive, and thus can fail to �nd bugs

associated with rare inputs or execution paths. Static analysis can

be a complementary approach to testing, as it attempts to model

every possible execution of a program and prove some property

about it (such as it being free of privacy leaks or memory errors).
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The problem of proving non-trivial properties about a program

is undecidable [25]. Thus, a static analysis designer must delicately

balance the goals of soundness, precision, and termination. The

performance of an analysis depends not only on the analysis algo-

rithms used, but also on the features of the program being analyzed.

Thus, many static analysis tools come with various con�gurations,

representing various algorithms with their own tradeo�s. An end

user can optimize the analysis by con�guring the tool with settings

appropriate for their target program(s).

However, con�gurable static analysis faces obstacles to wide-

spread adoption [12, 30]. Con�guration options are often imple-

mented in ad-hoc ways that can make their purpose unclear even

to domain experts. There may be undocumented relationships be-

tween con�guration options that make a tool behave in unintu-

itive ways. Because of the large con�guration spaces, such tools

are often poorly tested and only evaluated on a single con�gu-

ration [7, 11, 23, 24, 28]. One reason for this is that it is di�cult

to come up with new benchmarks that are capable of testing the

precision and correctness of an analysis [18].

The goal of my research is to improve the reliability of con�g-

urable static analysis tools. Achieving this goal would help push

towards widespread adoption of static analysis tools. In addition

to producing higher quality analysis tools, this would also result

in higher quality software in general as these tools become part of

everyday developer work�ows. I plan to achieve this goal through

a combination of empirical studies, novel theoretical contributions,

and engineering e�orts. Towards this goal, I identify three sig-

ni�cant milestones in the progress of my Ph.D. research: better

understand the full behavior of con�gurable static analysis tools

(M1), develop an approach to simplify and automate the task of

testing and debugging con�gurable static analysis tools (M2), and

develop an approach to ease the production of new benchmarks

that test speci�c features of static analysis tools (M3).

I �rst present an empirical study that aims to reevaluate three

taint analysis tools for Android which had only been compared on

single con�gurations before (M1; Section 2). This study proposes an

explicit encoding of con�guration spaces to capture intended behav-

iors of con�guration options. We leverage these relations between

con�gurations to develop new testing and debugging approaches

for static analysis tools, that work even without ground truths.

These approaches are realized in a tool, ECSTATIC, a reproducible

and extensible framework for automatically testing and debugging

static analysis (M2; Section 3). Although ECSTATIC can �nd issues

that manifest between con�gurations, it cannot be used to �nd bugs

that are everpresent or that exist in tools without con�gurations.

Therefore, the �nal piece of the puzzle is the development of analy-

sis feature speci�cations that can be used to automatically produce

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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static analysis benchmarks from real-world programs (M3; Section

4).

2 UNDERSTANDING CONFIGURABLE TAINT
ANALYSIS

Despite the presence of con�guration options in many static anal-

ysis tools, evaluations of such tools tend to focus only a single

con�guration [7, 11, 23, 24, 28]. These evaluations fail to capture

the full range of a given tool’s behavior, and may present a mislead-

ing picture about the relative capabilities of di�erent tools. Thus,

we performed the �rst comprehensive study of con�gurable static

taint analysis tools that considers their behavior throughout many

con�gurations. For this study, we studied two static taint analyzers

for Android: FlowDroid [7] and DroidSafe [11]. We chose these

two tools because they were extensively con�gurable and had been

compared against each other in prior works [8, 17, 23, 24], all of

which only studied a single con�guration of each tool.

Our goals in this work were to evaluate these tools through the

lens of their full con�gurability, and to make actionable sugges-

tions for best practices regarding the tuning and testing of these

tools. The methodology for achieving these goals consisted of two

components. First, a manual investigation of the source code of

FlowDroid and DroidSafe, with the goal of understanding the trade-

o�s between the individual settings of analysis options, as well as

the relation between di�erent analysis options. Second, we adopted

techniques from combinatorial interaction testing (CIT) to perform

an empirical evaluation of the two tools through the lens of their

full con�guration space.

As a result of the manual investigation, we identi�ed and en-

coded two distinct relations in the con�guration spaces of these

two tools. The �rst relation is disablement, in which one option

setting masks the e�ect of another. For example, FlowDroid has an

option, implicit, which indicates the extent to which the tool should

track implicit �ows [14]. Setting this option to ALL (i.e., track all

implicit �ows) disables all settings of another option, codeelimina-

tion, which allows FlowDroid to perform code optimizations that

are sound with respect to the detection of explicit �ows, but may

change implicit data �ows. These relationships, intentional or not,

existed in both tools and were never documented.

The second relationship comprises two partial orders over an

option’s settings – these are the precision and soundness partial

orders. For example, an analysis setting of 2-object-sensitivity would,

with regard to precision, precede (i.e., be at least as at precise as)

a 1-object-sensitivty setting. These relations encode the expected

e�ects of a setting relative to another setting on the result set

produced by an analysis. Let � and � be two partially-ordered

con�gurations, where two con�gurations are partially ordered if

they di�er only in the settings of one option > , such that�’s setting

of > and �’s setting of > have a partial order relationship. If� is more

precise than �, then we expect the set of false positives produced

by � (denoted �% (�)) to be a subset of �% (�) on the same input.

Similarly, a soundness partial order encodes the expectation that,

if � is more sound than �, the set of true positives produced by �

(denoted )% (�)) should be a superset of )% (�) on the same input.

We explicitly encoded all disablement and partial order relations

Figure 1: The number of true and false positives produced

by each two-way con�guration of DroidSafe on FossDroid,

plotted alongside performance.

that we identi�ed and used them to run multiple experiments to

test the con�gurations of FlowDroid and DroidSafe.

For our study, we collected three benchmarks: DroidBench 3.0 [1,

7, 23], a microbenchmark developed by the creators of FlowDroid

and for which the ground truths are known; 30 apps from the

FossDroid repository of open-source Android software [2]; and 50

apps from the Google Play app store.

We constructed two distinct con�guration samples in order to

understand di�erent aspects of the tools. First, to better understand

the e�ects of individual option settings, we generated a sample

of con�gurations that, had at most only a single option di�erence

from the default con�guration (single-option con�gurations). Then,

to better understand the wide range of possible behaviors caused

by option interactions, we used combinatorial testing approaches

to generate sample con�gurations for FlowDroid and DroidSafe.

We ran each con�guration of both tools on all benchmarks.

As a result of our evaluation, we found that con�gurations intro-

duce a wide variance in terms of performance, precision, and sound-

ness. For example, Figure 1 shows the results of running DroidSafe’s

two-way con�gurations as well as its default con�guration on the

FossDroid benchmark. As can be seen in the con�gurations to the

right of the default, we found multiple two-way con�gurations that

detected more true positives than the default con�guration. We

also found that the majority of con�gurations did not produce any

results. Furthermore, we found evidence of bugs in the tools by

comparing the expectations encoded by our partial order relations

to the actual results. In 21 cases across both tools we found cases

where a more precise/sound setting behaved contrary to our ex-

pectations. These �ndings indicate that future evaluations of static

analysis tools should consider many con�gurations rather than just

one. They also point to a lack of thorough testing and evaluation

of non-default con�gurations in these tools.

3 TESTING CONFIGURABLE STATIC
ANALYSIS

Motivated by the lack of rigorous testing of con�gurable static

analysis tools, we aim to develop a framework to assist practitioners

(i.e., analysis designers and users) �nd and �x bugs in these tools.

To do so, we leverage the partial order relationships identi�ed in the

previous work to develop novel approaches for (1) �nding bugs in

con�gurable static analysis, and (2) reducing input programs to the

features that induce these bugs. We then aim to instantiate these

ideas in a framework that can be used by practitioners. The goals in
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Figure 2: An overview of ECSTATIC.

designing such a framework are to make it easy-to-use and general,

such that a user (i.e., an analysis designer or user) could integrate

new tools and input programs with ease. We aim to assist the user

not only in detecting bugs, but also in the debugging process.

We realize this goal in ECSTATIC, which is a highly customiz-

able approach and accompanying tool. ECSTATIC realizes novel

partial order-aware techniques to detect bugs and then uses a new

two-staged violation-aware delta debugging approach to reduce

input programs to their failure-inducing features. Figure 2 shows

an overview of ECSTATIC’s approach. Given a partial order speci-

�cation, a con�guration grammar, and a set of input programs as

input, ECSTATIC tests programs in two phases. In the base testing

phase, ECSTATIC generates con�gurations akin to the single-option

con�gurations described in Section 2 (i.e., a single setting di�erent

from the default). It runs each con�guration on each program in the

input program set, then detects partial order violations. The second

phase is random testing, which aims to construct con�gurations that

exercise more feature interactions. We randomly select a number

of partial orders for which a violation has not yet been detected,

then produce a random con�guration using the supplied con�gu-

ration grammar. We mutate this random con�guration to produce

partially-ordered con�gurations, then run these con�gurations on

a random subset of input programs. This phase is repeated until a

set time limit is hit.

A critical aspect of ECSTATIC is that it elides the static analy-

sis oracle problem by allowing testing on input programs without

known ground truths. This allows us to use large, real-world pro-

grams to perform testing.We achieve this by pairing every explicitly

de�ned partial order with one or more implicit partial orders; the

combination of explicit and implicit partial orders leads to set con-

straints that can be checked without knowing the classi�cations of

a tool’s results. In order to assist users in the debugging of analysis

results, for each detected partial order violation, we perform delta

debugging [32] to reduce input programs down to failure-inducing

features. Our delta debugging approach has two key novelties. First,

we use the presence of a partial order violation as the predicate

the delta debugger uses to determine whether to accept a change.

Still, the speci�c use case presented by ECSTATIC (i.e., reducing

inputs to static analysis tools) presents a unique di�culty in terms

of time: compilation and, to an even greater extent, rerunning the

static analysis tool can take quite a long time and e�ective delta

debugging requires many iterations, especially for larger programs

(e.g., real-world programs). Therefore, the second novelty is the de-

sign and implementation of a two-stage delta debugging technique,

taking inspiration from Kalhauge and Palsberg’s class-dependence

Table 1: Con�guration spaces of SOOT, WALA, DOOP, and

FlowDroid, and lines of code needed to integrate them into

ECSTATIC.

SOOT WALA DOOP FlowDroid

# Options 20 5 20 22

# Partial Orders 20 26 35 77

Total LoC 90 53 111 156

Table 2: Partial order bugs detected in each tool by dataset.

MB is microbenchmark, and RW are real-world. The bar in

each cell di�erentiates bugs detected in base testing (left) and

bugs detected only in random testing (right).

SOOT WALA DOOP FlowDroid Total

MB 3 | 0 0 | 0 0 | 0 26 | 2 29 | 2

RW 18 | 0 6 | 3 12 | 0 2 | 7 38 | 10

Total 18 | 0 6 | 3 12 | 0 28 | 7 64 | 10

based delta debugging [13]. This algorithm works on a class-level

granularity, taking care to only remove sets of classes that form

transitive closures on the class-dependence graph (CDG). We �rst

run CDG-based delta debugging on the input program, then run

hierarchical delta debugging (HDD) [19] on the reduced program.

ECSTATIC runs every experiment inside a Docker container for

portability and consistency, and provides simple interfaces to the

user to allow them to run the tool on new tools or input program

sets. In order to integrate a new static analysis tool, a user produces

a con�guration space speci�cation and a con�guration grammar.

Additionally, a user implements a Docker�le, as well as writing an

implementation of a tool runner and tool reader class, by extending

abstract classes provided by ECSTATIC. Table 1 shows the total

number of lines of integration code we wrote to implement four

static analyzers, SOOT, DOOP, WALA, and FlowDroid. As can be

seen, a user needs to write few lines of code in order to integrate

new tools. To add new input program sets, the user simply provides

ECSTATIC with a script that downloads the source code, as well as

an index indicating which programs to analyze.

We used ECSTATIC to test the four aforementioned static analyz-

ers on microbenchmarks and real-world programs. Table 2 shows

the number of bugs we were able to �nd in each tool, broken down

by testing phase and dataset. We were able to detect 74 partial order

violations across the four tools in total. In SOOT and FlowDroid, we

were able to �nd bugs using the microbenchmark. This is especially

signi�cant since DroidBench, the microbenchmark for Android, is

used as the test suite for FlowDroid. Most (64) bugs were found by

the base testing phase; however, 10 additional bugs were only found
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by the random testing phase, indicating that they are predicated

upon feature interactions. We have reported 42 of these bugs to

developers; in all cases where developers have responded, they

have con�rmed that we found misbehavior. Our two-phase delta

debugger was also e�ective, able to reduce a real-world program to

only 1% of its original size given a 6-hour timeout. These results

demonstrates ECSTATIC’s bug-�nding and debugging utilities.

4 BENCHMARKING CONFIGURABLE STATIC
ANALYSIS

To ensure the ongoing quality of static analysis tools, it is necessary

to create high quality benchmarks for static analysis. Such bench-

marks make evaluations more comparable and provide common

understanding on the expected behavior of an analysis.

We de�ne four criteria for high-quality static analysis bench-

marks: (1) the benchmark should be categorized by the analysis

feature that it is testing. This allows for a comprehensive compari-

son of the features that di�erent tools support. (2) The benchmark

should have ground truths against which an analysis result can be

compared. This would allow identi�cation of both precision and

soundness issues. (3) The benchmark should be similar to actual pro-

grams that an analyzer would be expected to consume in real-world

scenarios. (4) The benchmark should be easily extensible with new

programs. Microbenchmarks, like CATS [5] and DroidBench, meet

criteria (1), (2), and (4), but comprise small, handwritten programs

that do not meet (3). Conversely, real-world benchmarks meet cri-

terion (3), but tend to only support either one of (2) or (4) because

of the di�culty in determining ground truths for real programs.

We thus propose a methodology to automatically produce bench-

marks that meet these criteria, through the de�nition and detection

of analysis feature patterns. These patterns represent run-time be-

havior that can be mapped to a partial analysis result. Consider an

analysis tool that claims re�ection support (a feature). We can write

a dynamic analysis to report calls to Java’s Method.invoke, along

with the run-time parameters (which encode the target method as

a string). This detector can be run on real-world programs, and the

ground truth can be produced automatically.

The expected contributions of this work include an interface

for creating pattern speci�cations, which will be consumed by

software to automatically produce benchmarks. We also plan to

contribute an evaluation to demonstrate the utility of our system.

To evaluate the system, we plan to perform evaluations similar to

other feature-wise evaluations of static analysis tools, in order to

demonstrate that our approach can produce benchmarks broken

into feature categories that can be used to test static analysis tools.

There are various challenges to this direction of work. It will be a

challenge to write patterns that balance generality and precision.

Furthermore, it will be challenging to write an interface for creating

these patterns that is expressive enough to capture various types

of runtime behavior.

5 PROGRESS

The results of the work realizing M1 and M2 have been published

at ISSTA [21] and ICSE [22], respectively; M3 is my current work.

I have three additional relevant publications. Two apply machine

learning; one to classify static analysis results [31], and to automat-

ically con�gurre static analysis tools [15]. The third work concerns

the ability of static analysis to �nd variability bugs in C software

product lines [20].

6 RELATED WORK

The work to realize M1 was inspired by other works that evaluated

Android taint analysis tools [8, 23, 24]. Each work only evaluates a

single con�guration, whereas our work tries to understand these

tools through the lens of their full con�gurability. Other studies

have studied analysis tools with small con�guration spaces [16,

27, 29], while our work focuses on the much larger con�guration

spaces of Android taint analysis tools.

On testing and debugging static analysis tools, Do et al. created

Visuflow, a visual debugging environment for FlowDroid [10].

Visuflow presents general information, like the IR and the ICFG,

which are useful artifacts for debugging. However, unlike ECSTATIC,

it neither performs testing nor �nds bugs. We envision Visuflow

and ECSTATIC serving complementary roles in helping developers

debug static analyses. Andreasen and Møller used a delta debugger,

JS Delta [3], and the TAJS inspector [4] to diagnose precision and

performance bugs in analysis of jQuery [6].We similarly apply delta

debugging to reduce programs to their failure-inducing inputs, but

our approach can debug both precision and soundness issues and is

applicable to many analysis tools. Generally, metamorphic testing

is commonly used in compiler testing [9]. We are unaware of any

other work that applies metamorphic testing to partially ordered

con�gurations in static analysis tools.

The work we outline in Section 4 is related to other works that

attempt to benchmark static analysis. Recent work produces new

benchmarks for Android taint analysis using fuzzing [26]. Luo et

al. aim to ease the process of manually inspecting taint analysis

results in order to create new malware benchmarks [18]. These

works are important �rst steps toward the vision of automatic

benchmarking, but we aim to be more general in our approach,

allowing for speci�cation of analysis features that can be detected

on programs across multiple languages, hopefully eliding the need

for manual investigation.

7 CONCLUSIONS

Con�gurable static analysis tools have the potential to complement

dynamic approaches like testing, but face obstacles to widespread

adoption. To help overcome these obstacles, I outline work towards

the goal of improving the reliability, maintainability, and usabil-

ity of con�gurable static analysis. The �rst step of this research

was an empirical study on two con�gurable Android taint analysis

tools [21]. This study proposed a formalization of relationships

within a static analysis tool’s con�guration space and evaluated

the tools through their full con�gurability. The results of this study

motivated ECSTATIC, a tool for automatically performing meta-

morphic testing on con�gurable static analysis tools [22]. Next, I

will develop an approach that allows the automatic generation of

benchmarks with associated analysis features and ground truths.
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