
The Impact of Tool Configuration Spaces on the Evaluation of
Configurable Taint Analysis for Android

Austin Mordahl
The University of Texas at Dallas

Dallas, TX, USA
austin.mordahl@utdallas.edu

Shiyi Wei
The University of Texas at Dallas

Dallas, TX, USA
swei@utdallas.edu

ABSTRACT

The most popular static taint analysis tools for Android allow users

to change the underlying analysis algorithms through configuration

options. However, the large configuration spaces make it difficult

for developers and users alike to understand the full capabilities of

these tools, and studies to-date have only focused on individual con-

figurations. In this work, we present the first study that evaluates

the configurations in Android taint analysis tools, focusing on the

twomost popular tools, FlowDroid and DroidSafe. First, we perform

a manual code investigation to better understand how configura-

tions are implemented in both tools. We formalize the expected

effects of configuration option settings in terms of precision and

soundness partial orders which we use to systematically test the

configuration space. Second, we create a new dataset of 756 manu-

ally classified flows across 18 open-source real-world apps and con-

duct large-scale experiments on this dataset and micro-benchmarks.

We observe that configurations make significant tradeoffs on the

performance, precision, and soundness of both tools. The studies

to-date would reach different conclusions on the tools’ capabilities

were they to consider configurations or use real-world datasets.

In addition, we study the individual options through a statistical

analysis and make actionable recommendations for users to tune

the tools to their own ends. Finally, we use the partial orders to

test the tool configuration spaces and detect 21 instances where

options behaved in unexpected and incorrect ways, demonstrating

the need for rigorous testing of configuration spaces.

CCS CONCEPTS

· Software and its engineering→ Automated static analysis;

· General and reference→ Empirical studies.

KEYWORDS

Android taint analysis, configurable static analysis, empirical study

ACM Reference Format:

Austin Mordahl and Shiyi Wei. 2021. The Impact of Tool Configuration

Spaces on the Evaluation of Configurable Taint Analysis for Android. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464823

Testing and Analysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3460319.3464823

1 INTRODUCTION

Static taint analysis is essential for detecting security vulnerabilities

in Android apps. However, language features such as reflection [29]

and callbacks [45] complicate the task of static analysis. Different

algorithms for handling these features present tradeoffs between

precision, soundness and performance. For example, several An-

droid taint analysis tools handle lifecycle callbacks through a syn-

thetic main method [9, 43]. One way to construct this method is to

use a fixed-point algorithm to include only the reachable callbacks

[9]. A less precise but faster solution is to scan for classes imple-

menting callback interfaces and include all of them [1]. A useful

tool needs to achieve a łsweet spotž between the competing needs

for accuracy and performance. This sweet spot is a moving target,

dependent upon target programs, user’s preferences, and available

resources. Thus, static analysis tools often include configuration

options so that tool designers can evaluate different design choices

and users can tune configurations according to their needs. For ex-

ample, FlowDroid has 22 algorithmic options (i.e., options that affect

the analysis algorithms), such as implicit which enables/disables

the tracking of implicit information flows [23].

In the past few years, many algorithms and tools for Android

taint analysis have been developed [6, 8ś11, 13, 15, 16, 18, 22, 24,

28, 43]. Recently, several empirical studies have compared the most

popular tools (FlowDroid [9], DroidSafe [18], Amandroid [43], Ic-

cTA [28], DidFail [24], and DIALDroid [11]) and revealed important

insights about their behaviors [12, 30, 34, 35]. However, these stud-

ies have focused only on one configuration of each tool, often the

default. Their insights may not capture the tools’ full capabilities

because certain behaviors may be exposed only through other con-

figurations. Furthermore, since these evaluations rely heavily on

hand-crafted micro-benchmarks with known ground truths, the

conclusions may not generalize to real-world programs, which are

the intended targets for the tools’ use.

In this work, our goals are to (1) evaluate the state-of-the-art

static taint analysis tools through the lens of their full configurabil-

ity on programs that are more representative of those that users

want to analyze, and (2) make actionable suggestions for tuning the

tools and provide a methodology for testing the implementations

of configuration options. Of the six tools listed above, the first three

have algorithmic configuration options. We focus on FlowDroid

and DroidSafe, as we observed nondeterminism in Amandroid’s

results that made it unsuitable for this study [32].

466

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464823
https://doi.org/10.1145/3460319.3464823

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Austin Mordahl and Shiyi Wei

To meet our goals, one challenge is that the documentation of

configuration options may be ambiguous. We investigate the imple-

mentations of these two tools with the goal of better understanding

the intended behaviors of their configuration options and their

settings. During this investigation, we identify two undocumented

relationships in the tools’ configuration spaces (Section 2). The first

is disablement, wherein one setting of an option can prevent another

setting of an option from taking effect. This commonly happens

when the code that one setting runs is within a conditional block

guarded by a setting of another option. This relationship is detri-

mental to users, since it is undocumented and can mislead a user

into believing that a configuration option does nothing. Second,

we identify precision and soundness partial orders, which quantify

the expected tradeoffs in terms of true and false positives produced

by changing an option to a different setting. These partial orders

make the configuration space easier to understand and provide a

new method to automatically test different configurations for bugs.

We identify 158 precision and soundness partial orders across both

tools.

The second challenge is that the large configuration spaces make

it infeasible to study configurations exhaustively and the lack of

representative benchmarks makes it difficult to assess the tool be-

havior in real-world programs. Because there are no large real-

world benchmarks with known ground truths for Android taint

analysis, we collected 30 open-source real-world apps from Foss-

Droid [7] and classified the flows detected by the tools, yielding a

new dataset of 63 true positive and 693 false positive flows (Sec-

tion 3). We use combinatorial interaction testing (CIT) techniques

to sample the configuration spaces of FlowDroid and DroidSafe.

We then run these configurations on the FossDroid dataset along

with a broadly used micro-benchmark, DroidBench 3.0 [5], and

50 apps from the Google Play store to evaluate the impact of tool

configuration spaces and dataset selection.

Our experiments, enabled by our solutions to these challenges,

result in key findings that recontextualize the recent studies (Section

4). We find that only evaluating a single configuration presents a

limited andmisleading picture of a tool’s capabilities (RQ1). There are

several instances in our data where testing on a single configuration

gives the false impression that a tool does not support certain

language features (e.g., reflection) or supports them poorly. While

tools certainly have limitations, we find that aggregating the results

across configurations gives a more complete picture of what a tool is

capable of. We also observe that the results on micro-benchmarks do

not generalize to real-world programs (RQ2). Our FossDroid dataset

draws out more exaggerated impacts of configuration options than

the micro-benchmark in terms of both performance and precision.

This demonstrates the urgent need for a large dataset of real-world

programs in which the ground truths are known.

In addition, we perform statistical analysis to understand how

the configuration options impact the behaviors of FlowDroid and

DroidSafe. We find that 15 out of 45 options across both tools affect

performance without an apparent precision hit and 2 options in Flow-

Droid present significant tradeoffs between performance and precision

(RQ3). This result suggests that users may consider using the faster

settings in these 15 options by default and tuning the 2 options

related to the IFDS solver [36] and reflection handling. Through an

investigation enabled by our precision and soundness partial orders,

we observe that 21 options display incorrect behaviors that indicate

errors in the tools’ documentation and/or implementation (RQ4). This

demonstrates both the utility of partial orders as a testing aid for

static analysis tools and the lack of testing of the configuration

spaces of the Android taint analysis tools.

Overall, this paper makes the following contributions:

• The first empirical study that focuses on the configurations

in Android taint analysis tools. The experiments on three

datasets reevaluate the current capabilities of state-of-the-art

tools, and the observations shed light on the necessity of

evaluation and testing of their configuration spaces.

• A manual investigation of the source code of FlowDroid and

DroidSafe that summarizes how configurations are imple-

mented in state-of-the-art tools. As a result of this investi-

gation, we produce soundness and precision partial orders,

which formalize the expected behavior of configuration op-

tions and can be used to test configuration spaces of static

analysis tools.

• A dataset consisting of 63 true positive and 693 false positive

flows across 18 applications from the FossDroid open-source

repository, which can serve as a starting point for future

real-world benchmarks.

We have made the artifacts, including datasets, investigation

and experimental results, available for future tool development and

evaluation [32].

2 INVESTIGATION OF ANALYSIS OPTIONS

The first step we took to better understand the capabilities of con-

figurable tools was to study the implementation of their large con-

figuration spaces. We focused on algorithmic options in FlowDroid

and DroidSafe to evaluate their impact on precision, soundness and

performance. These are options which have an effect on the analysis

algorithms themselves, as opposed to other factors like input/output

formatting. In total, we studied 22 options in FlowDroid and 23 op-

tions in DroidSafe. We performed a manual code investigation with

the goals of (1) uncovering undocumented relationships between

options, and (2) better understanding the tradeoffs that different set-

tings of an individual option provide. Achieving these goals helps

both the user and designer better understand and anticipate the

behavior of these tools.

In our manual investigation, we first located the variables in

code that were set by configuration options. We then traced the

usages of these variables in the tool implementations and identified

two types of undocumented relationships that exist between option

settings.

Disablement. The first relationship is between the settings of

two different options, where setting one option prevents another

option’s setting from making a difference. We formally define it as

follows.

Let 𝑃 = ((𝑐1 ↦→ 𝑣1), (𝑐2 ↦→ 𝑣2), . . . , (𝑐𝑘 ↦→ 𝑣𝑘)) be a configura-

tion of a taint analysis tool, where 𝑐𝑖 is an algorithmic configuration

option and 𝑣𝑖 ∈ dom(𝑐𝑖) is the setting of 𝑐𝑖 . We denote the default

setting for 𝑐𝑖 as 𝑣
𝑑
𝑖
. Let 𝑃𝐷 be the default configuration of the pro-

gram, such that 𝑃𝐷 = ((𝑐1 ↦→ 𝑣𝑑1), (𝑐2 ↦→ 𝑣𝑑2), (𝑐3 ↦→ 𝑣𝑑3), . . .).

Configuration options that are explicitly set are noted in brackets,

such that 𝑃𝐷 [𝑐1 ↦→ 𝑣1] = ((𝑐1 ↦→ 𝑣1), (𝑐2 ↦→ 𝑣𝑑2), (𝑐3 ↦→ 𝑣𝑑3), . . .).

467

The Impact of Tool Configuration Spaces on the Evaluation of Configurable Taint Analysis for Android ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 //--typesforcontext: use types (instead of alloc sites) for

object sensitive context elements > 1

2 if(cmd.hasOption("typesforcontext")){ //Config.java:674

3 this.typesForContext = true;

4 }

5 void setSparkPointsToAnalysis() { //SparkPTA.java:786

6 ...

7 opt.put("kobjsens-types-for-context", Boolean.toString(

Config.v().typesForContext));

8 ...

9 }

Figure 1: Excerpts of the implementation and usage of the

typesforcontext option in DroidSafe.

Let 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑘 } be the set of flows produced by a taint

analysis. We consider two flows 𝑓1 and 𝑓2 equivalent if (1) they have

the same source and sink method signatures, and (2) the source

(and sink) of 𝑓1 and the source (and sink) of 𝑓2 are called from the

same method. Let 𝑅 : 𝑃 × 𝐴 → 𝐹 signify running a deterministic

analysis tool with configuration 𝑃 on input 𝐴 resulting in the set

of flows 𝐹 (i.e., 𝑅(𝑃,𝐴) = 𝐹). Given two configurations 𝑃𝑖 and 𝑃 𝑗 ,

𝑃𝑖 = 𝑃 𝑗 ⇐⇒ ∀𝑘, 𝑅(𝑃𝑖 , 𝑘) = 𝑅(𝑃 𝑗 , 𝑘). We therefore say that (𝑐1 ↦→

𝑣1) disables (𝑐2 ↦→ 𝑣2) if ∀𝑖, 𝑃𝑖 [𝑐1 ↦→ 𝑣1, 𝑐2 ↦→ 𝑣2] = 𝑃𝑖 [𝑐1 ↦→ 𝑣1].

For example, Figure 1 shows how the typesforcontext option (de-

fault setting FALSE) in DroidSafe is implemented across multiple

files. Line 1 shows the command line documentation for this option.

Lines 2-4 show how the option is set to true if the typesforcontext

flag is passed on the command line. Line 7 shows the only place

where the typesforcontext field is read, which is inside the setSpark-

PointsToAnalysis method. This method is only called if pta is set

to SPARK (i.e., pta ↦→ SPARK). Thus, for any 𝑣 ≠ SPARK, pta ↦→ 𝑣

disables typesforcontext ↦→ TRUE. In other words, type sensitivity

[39] is only supported if the points-to analysis is SPARK [26]. If a

user were to set another points-to analysis, like PADDLE [25], she

would not have any indication that the setting of typesforcontext is

irrelevant.

Another example is that in FlowDroid’s configuration space,

implicit ↦→ ALL, which indicates that FlowDroid tracks implicit

flows, disables codeelimination ↦→ REMOVEALL, which enables the

optimization to eliminate side-effect free code. This means that

when FlowDroid analyzes implicit flows, it never removes side-

effect free code even if the user explicitly sets the analysis to do

so.

In total, we identified 5 and 7 disablement relationships in Flow-

Droid and DroidSafe, respectively. All these relationships were

discovered through code investigation and were not specified in

documentation.

Precision and soundness partial orders. While disablement

describes relationships between the settings of two different options,

we define two partial orders to describe the relationship between

settings within an option.

For two settings 𝑣11 and 𝑣21 of an option 𝑐1, (𝑐1 ↦→ 𝑣11) ⊑𝑆

(𝑐1 ↦→ 𝑣21) (or simply 𝑣11 ⊑𝑆 𝑣21) implies that 𝑃𝑖 [𝑐1 ↦→ 𝑣11] will

never produce more false negative results than (i.e., is at least

as sound as) 𝑃𝑖 [𝑐1 ↦→ 𝑣21] on the same input 𝐼 for any 𝑃𝑖 . Simi-

larly, (𝑐1 ↦→ 𝑣11) ⊑𝑃 (𝑐1 ↦→ 𝑣21) (or simply 𝑣11 ⊑𝑃 𝑣21) means that

𝑃𝑖 [𝑐1 ↦→ 𝑣11] will never produce more false positives than (i.e., is at

least as precise as) 𝑃𝑖 [𝑐1 ↦→ 𝑣21] on the same input 𝐼 for any 𝑃𝑖 . A

precision partial order assumes that there is no difference in sound-

ness between the two settings. If there is a difference in soundness,

then the more sound configuration may detect more false positives,

regardless of any difference in precision. In other words, a precision

partial order 𝑣11 ⊑𝑃 𝑣21 implies the two soundness partial orders

𝑣11 ⊑𝑆 𝑣21 and 𝑣
1
1 ⊑𝑆 𝑣21 . For example, a DroidSafe configuration with

kobjsens ↦→ 3 (which controls the level of object sensitivity [31])

should never produce more false positives than the same configu-

ration with kobjsens ↦→ 2 since (kobjsens ↦→ 3) ⊑𝑃 (kobjsens ↦→ 2)

and, since precision partial orders imply soundness partial orders,

neither configuration should miss true positives that the other de-

tects.

We constructed these partial orders based on our understanding

of the intended effects of the settings from the documentation and

from our domain expertise in static analysis. In total, we identified

158 partial orders (15 precision and 53 soundness partial orders

in DroidSafe, and 16 precision and 74 soundness partial orders in

FlowDroid). These counts include the implied soundness partial

orders that precision partial orders produce. These partial orders

are helpful for understanding the effects of configuration options.

Furthermore, they enable more effective testing to uncover issues

in configuration option implementation (Section 4.4).

For the tool users to better understand the relationships between

analysis options, our released artifacts include configuration space

graphs that visualize all disablements and partial orders in Flow-

Droid and DroidSafe [32].

3 EXPERIMENTAL DESIGN

With a clearer understanding of FlowDroid and DroidSafe’s con-

figuration spaces from our manual investigation, we designed our

experiments to achieve two goals. First, we aim to recontextualize

past studies by showing how considering configuration spaces and

evaluating tool quality on real-world programs affects the results

of an evaluation. Second, we aim to test and study configuration

options in order to better understand their tradeoffs.

Target apps. We performed our experiments with three differ-

ent datasets. Ideally, we would evaluate these tools on a large real-

world benchmark with known ground truths, but such a benchmark

does not exist. Thus, we collected two new datasets of real-world

programs. First, we selected 30 apps from the FossDroid repository

[7]. Since these apps are open-source, we were able to manually

classify flows in order to evaluate precision. We initially down-

loaded the 10 most popular apps from each of the 17 categories on

the FossDroid site, but found that DroidSafe could only analyze

30 of these 170 apps because it uses an old version of APKTool

[3] that cannot decompile the newer apps. The first three columns

in Table 1 show the names, versions and sizes of the apps in our

FossDroid dataset.

Second, we collected the top 50 most popular apps from the

Google Play app store, downloaded from APKMirror [2]. Without

source code, we could not classify the flows produced by running

on these apps, but we evaluated the tools’ performance from these

apps. The Google Play apps range in size from 1.4MB to 105MB,

with a median size of 31MB. We only ran FlowDroid on the Google

Play dataset because DroidSafe could not analyze any of the apps.

468

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Austin Mordahl and Shiyi Wei

Table 1: The FossDroid dataset.

App name Version LOC Flow TP FP

1010! Klooni 820 5387 0 0 0

Acrylic Paint 17 1274 28 0 28

Alarm Klock 15 3313 226 17 209

AndroSS 17 1405 50 4 42

Apple Flinger 1005006 14404 0 0 0

Budget 44 5984 9 0 7

Budget Watch 29 9836 25 2 23

Calendar Trigger 7 12003 46 0 0

CuprumPDF 4 215 0 0 0

Debian Kit 6 516 21 2 19

Dialer2 17 1868 107 10 97

Emerald Dialer 10 2158 50 7 33

Ensichat 17 338 0 0 0

Flexible Wallpaper 2 291 1 1 0

ForRunners 101030 19870 0 0 0

Free Fall 4 2803 3 1 2

Frozen Bubble 54 18007 50 6 42

Gloomy Dungeons 2 1602221800 121799 0 0 0

Locker 11 654 0 0 0

Mighty Knight 1 13496 0 0 0

OsmAnd+ 355 448794 5 0 5

Overchan 54 72605 91 3 82

Polar Clock 10 119 0 0 0

Shana A.W. 10 2170 0 0 0

Tachiyomi 41 39149 5 1 0

Talalarmo 19 1224 1 0 0

Terminal Emulator 72 17429 50 1 40

Tux Paint 923 10837 4 4 0

WiFi Walkie Talkie 14 4542 57 4 52

Workout Log 2 1177 12 0 12

Total 839 63 693

Finally, we used the entire DroidBench 3.0 benchmark [5, 34].

It is the latest version of this widely adopted micro-benchmark,

and contains ground truths that allow us to measure the tools’

accuracy. The benchmark is split into categories, each of which tests

whether an analysis tool supports a specific feature, such as implicit

flow tracking or field and object sensitivity. Using DroidBench

3.0, we compare it to our real-world datasets and replicate past

studies’ methodologies in a configuration-aware manner. The sizes

of DroidBench 3.0 apps range from 8 to 236 lines of code.

Configuration sampling. Because of the large configuration

spaces in FlowDroid and DroidSafe, we generated samples of con-

figurations to study. We included all algorithmic options, except for

FlowDroid’s nostatics option because we learned that internally, it

simply sets staticmode to NONE, and so is redundant. For numeric

options, we included the default setting and the settings calculated

by the default value ± 10%, 20%, 50%, 100%, and 500% that were

within the domain of the option. For all other options, we included

all settings, except for the MULTI and STUBDROID settings of the

taintwrapper option in FlowDroid, which required input files we

could not successfully generate.

We created two samples to answer different research questions.

First, we generated two-way covering arrays [33] using ACTS 3.2,

a combinatorial testing tool from NIST [4]. We chose pairwise

sampling over other sampling approaches such as random sam-

pling because it guarantees the sampled configurations contain all

two-way combinations of the option settings [14]. It is commonly

assumed that most faults are caused by the interaction of only a

few features [41]. We believe that this assumption extends to our

goal of uncovering interesting behaviors caused by analysis options

and their interactions. We sampled 144 two-way configurations for

FlowDroid and 77 for DroidSafe.

Second, we constructed a set of configurations for each tool that

was more suitable for testing individual options. For each setting

𝑣
𝑗
𝑖

| 𝑗 ≠ 𝑑 of each option 𝑐𝑖 , we constructed the configuration

𝑃𝐷 [𝑐𝑖 ↦→ 𝑣
𝑗
𝑖
]. We refer to these as single-option configurations

because they change a single setting of an option from the default.

There are 67 single-option configurations for FlowDroid and 41 for

DroidSafe.

Experimental environment. All experiments were conducted

on a server with 376GB of RAM and 2 Intel Xeon Gold 5218 16-core

CPUs @ 2.30GHz running Ubuntu 18.04. We ran each app in Droid-

Bench 3.0 with a 10-minute timeout, and each of the FossDroid

and Google Play apps with a 2-hour timeout. The same timeout

was used by Pauck et al. [34] for DroidBench 3.0, and our time-

out for FossDroid and Google Play is four times longer than their

experiments for real-world apps. We used Pauck et al.’s Repro-

Droid framework to run our experiments [34]. Each experiment

was repeated three times and we report the median results for each

configuration. In total, our experiments took 33, 940 machine hours

to run.

Deduplication and classification.We classified the flows pro-

duced on the FossDroid dataset to assess the quality of the con-

figurable tools on real-world programs. First, we post-processed

the results to prepare for the classification. We only considered

the flows whose sources and sinks are in the application code be-

cause we did not always have access to the library code to perform

investigations. We also deduplicated the flows per the definition

of equivalent flows in Section 2. Second, we performed manual

classification. We classified all 423 flows reported by FlowDroid.

It was infeasible to manually classify all 1536 distinct flows pro-

duced by DroidSafe, so we classified all flows in apps that had 50

or fewer reported flows, and for each of the remaining apps, we

randomly selected 50 flows to investigate. This resulted in 416 flows

to investigate for DroidSafe.

Classification was done by four student workers over 10 weeks.

These students major in computer science and all have Android

development experience. In the initial training session, the students

were instructed to classify each flow as true, false, or inconclusive.

Students were guided to classify a flow as inconclusive if the total

time for investigating an individual flow exceeded 20 minutes. Each

flow was classified by two students. If two students produced a con-

flict classifying a flow, one of the authors met with the students and

discussed the flow until a consensus was reached. These conflicts

happened 101 times. The students also produced justifications for

each decision, in either textual format for flows that are relatively

short or as graphs tracking dataflow for more complex flows. In

total, we classified 63 true positives and 693 false positives. The

remaining 83 flows were inconclusive. Columns 4, 5, and 6 in Table

1 show the numbers of investigated flows, classified true positives,

469

The Impact of Tool Configuration Spaces on the Evaluation of Configurable Taint Analysis for Android ISSTA ’21, July 11–17, 2021, Virtual, Denmark

and classified false positives for each app, respectively. We have

made all the classified results and the justifications available in the

released artifacts [32].

Metrics and statistical analysis. For all three datasets, we

measured performance as the time in hours a configuration took

to analyze the entire dataset. Because ground truths are known in

DroidBench 3.0, we measured the tools’ results by F-measure (i.e.,

harmonic mean of precision and recall). We measured tools’ preci-

sion (i.e.,
|𝑇𝑃𝑠 |

|𝑇𝑃𝑠 | + |𝐹𝑃𝑠 |
) on FossDroid based on our classifications.

To find option settings that have a significant effect on the tool

results, we performed linear regression with lasso regularization

[42]. Lasso regularization adds an extra term to standard linear

regression, selecting a coefficient vector 𝛽 and a 𝑦-intercept 𝛽0 that

minimize

1

2𝑁

𝑁∑

𝑖=1

(𝑦𝑖 − 𝛽0 − 𝑥𝑇𝑖 𝛽)
2 + 𝜆∥𝛽 ∥1

where 𝑦𝑖 is the target value (i.e., precision, run time, or number

of completed apps), 𝑥𝑖 is a column vector of the option settings, 𝜆

is a hyperparameter, and ∥∥1 is the ℓ1 vector norm. Higher settings

of 𝜆 put more weight on the regularization term, making the model

more aggressive. Adding the regularization term helps prevent

overfitting by favoring models that set only a few coefficients to a

nonzero value, and thus produces more interpretable models [42].

We experimented with several different feature selection models,

and found this model to be the most suitable, as its optimum cross-

validated results consistently selected the fewest options. We used

R’s glmnet package to build these models [17].

Research questions. Our empirical study aims to answer the

following research questions:

RQ1: What do evaluations that focus only on a single configuration

miss? RQ1 aims to better understand how the lack of attention to

configurability has affected the evaluation of static taint analysis

tools. We rerun the experiments on DroidBench 3.0 from Pauck et.

al’s evaluation of six Android taint analysis tools [34], and detail

how a study that took configurations into account would come to

different conclusions than one that only uses a single configuration.

RQ2: How do tools perform differently on micro-benchmarks and

real-world datasets? RQ2 aims to determine whether a synthetic

micro-benchmark is sufficient for evaluation, by comparing the

behaviors of FlowDroid and DroidSafe’s two-way configurations on

our three datasets. By quantifying how the tools behave differently

on larger apps, we demonstrate the urgency of developing large

real-world benchmarks for future evaluations of real-world tools.

RQ3: Which option settings affect tool behavior? RQ3 aims to de-

termine what effects individual options have on FlowDroid and

DroidSafe’s behaviors. Using the lasso models and data visualiza-

tion, we make specific observations and recommendations for how

a user could tune the tools.

RQ4: Howmany options misbehave, according to our partial orders?

RQ4 aims to discover how many single options misbehave in terms

of their expected behaviors. Our definition of partial orders for

precision and soundness in Section 2 enabled this investigation. We

show how many partial orders were violated, and present a case

study demonstrating the implementation error of one option.

(a) FlowDroid.

(b) DroidSafe.

Figure 2: Performance (patterned bars) and F-measure (blue

bars) for two-way and default configs on DroidBench 3.0.

4 EXPERIMENTAL RESULTS

4.1 RQ1: What do evaluations that focus only
on a single configuration miss?

We answer RQ1 by rerunning the experiments done by Pauck et

al. on DroidBench 3.0 [34]. They evaluated six tools, and only the

default configuration of each tool was used. To show the impact of

the configurations, we additionally use the 2-way configurations

of FlowDroid and DroidSafe. We used the same versions of Aman-

droid, DIALDroid, DidFail, DroidSafe, and IccTA as Pauck et al.

[34], because these tools have not been updated since. We used a

later version of FlowDroid [1]. Due to the differences in environ-

ment, we could not recreate the F-measures produced by Pauck et

al. Thus, rather than comparing to their conclusions, we detail how

considering configurations would change an evaluation done on

only the default configurations per the results we obtained. Table 2

shows the results of running all six tools on DroidBench 3.0. Figure

2 shows more detail on the results of FlowDroid and DroidSafe’s

two-way configurations.

Overall, configurations introduce wide variance in terms of per-

formance and accuracy that paints a different picture of the tools’

capabilities. First, consider FlowDroid. Figure 2a shows that Flow-

Droid’s default configuration is the best-tuned in terms of per-

formance (no other two-way configuration finishes faster), and is

well-tuned in terms of F-measure (three configurations achieved a

higher F-measure). The default configuration achieved an overall

F-measure of 0.65, as shown in the last row of Table 2. The best con-

figuration produced an overall F-measure of 0.71. Even the default

configuration of FlowDroid outperforms every other tool in overall

F-measure.

470

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Austin Mordahl and Shiyi Wei

Table 2: The F-measures of the six tools’ results on DroidBench 3.0 organized by the feature categories in the benchmark.

FlowDroid and DroidSafe results are each shown in three columns ś the default configuration, the łmaxž category F-measure

across any configuration, and the łbestž configuration that achieved the highest overall F-measure. Cells in the max or best

columns that have a higher F-measure than the default are highlighted in green.

Feature category FlowDroid DroidSafe Amandroid DidFail IccTA DIALDroid

Default Max Best Default Max Best Default Default Default Default

Aliasing 0.67 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00

AndroidSpecific 0.95 0.95 0.95 0.46 0.46 0.00 0.46 0.43 0.84 0.00

ArraysAndLists 0.67 0.67 0.25 0.86 0.86 0.00 0.86 0.44 0.50 0.00

Callbacks 0.90 0.90 0.79 0.00 0.24 0.00 0.24 0.77 0.90 0.00

DynamicLoading 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EmulatorDetection 0.97 0.97 0.97 0.00 0.00 0.00 0.00 0.00 0.93 0.00

FieldAndObjectSensitivity 1.00 1.00 0.44 0.00 0.67 0.00 0.44 0.80 1.00 0.00

GeneralJava 0.81 0.87 0.70 0.55 0.82 0.09 0.70 0.61 0.76 0.00

ImplicitFlows 1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

InterAppCommunication 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.63

InterComponentCommunication 0.35 0.70 0.70 0.19 0.29 0.27 0.29 0.44 0.17 0.48

Lifecycle 0.83 0.91 0.91 0.34 0.80 0.70 0.80 0.41 0.69 0.00

Native 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reflection 0.62 1.00 0.62 0.00 0.36 0.00 0.36 0.20 0.20 0.00

Reflection_ICC 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SelfModification 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Threading 1.00 1.00 0.80 0.00 0.00 0.00 0.00 0.67 0.67 0.00

UnreachableCode 1.00 1.00 0.86 0.00 0.00 0.00 0.00 1.00 1.00 0.00

Overall 0.65 - 0.71 0.24 - 0.26 0.59 0.45 0.61 0.14

However, in terms of the specific features FlowDroid supports,

one can be misled by the default, as shown in Table 2. For example,

only considering the default, FlowDroid has no support for detect-

ing inter-component flows that incorporate reflection (F-measure

of 0 for the category Reflection_ICC in Table 2). The majority of

configurations that we ran also achieved an F-measure of 0 for

this category. However, six of them achieved a higher F-measure,

with a maximum of 0.31. Thus, FlowDroid does have partial sup-

port for these flows, making it the only tool in our experiments

that supports this feature.1 The four configurations that achieved

this F-measure had the same settings for every option except for

maxcallbacksdepth.

In the Reflection category, the default configuration shows partial

support (F-measure = 0.62), yet the best configuration shows full

support (F-measure = 1.00). This makes FlowDroid the only tool

to have full support for Reflection in our experiments. The four

configurations that achieved an F-measure of 1.00 all turned on

the enablereflection option and set the dataflowsolver option to

FLOWINSENSITIVE. However, there were 30 other configurations

that did the same, which have a Reflection F-measure ranging from

0.36 to 0.94, so it is likely that there are multiple higher-degree

interactions that cause this behavior.

Other cases show still partial, but better support than default

for some features, like InterComponentCommunication (max: 0.70

vs. default: 0.35, changing FlowDroid from third-best to the best),

GeneralJava (max: 0.87 vs. default: 0.81), and Lifecycle (max: 0.91

vs. default: 0.83). This aggregated picture is important, as even the

best configuration has drawbacks if taken alone, such as no support

1We use the terms partial and full support consistent with Pauck et al.’s study [34],
in which full support for a feature means the tool achieved an F-measure of 1.00, and
partial support means it achieved an F-measure in the range (0.00, 1.00).

for Aliasing, DynamicLoading, and ImplicitFlows. This supports

the conclusion that multiple configurations need to be considered

to fully understand a configurable tool’s behavior.

The same conclusion can be drawn if we consider DroidSafe.

Like with FlowDroid, Figure 2b shows that the default is well-tuned

for DroidBench 3.0, but the only configuration to achieve a better

overall F-measure also does so in less time. Considering only the

default, onemay think that the tool has no support for implicit flows,

field and object sensitivity, callbacks, and reflection. As shown in

column 6 of Table 2, DroidSafe in fact has full support for implicit

flows, and partial support for the other listed features. Furthermore,

the support for flows in the GeneralJava and Lifecycle categories

can be improved considerably by taking configurations into account.

Specifically, DroidSafe’s best F-measure for GeneralJava is better

than FlowDroid’s default.

To summarize, only focusing on a single configuration paints

an incomplete and incorrect picture of the range of outcomes that

tools can present. Had studies to-date focused on configurations,

they would have reached different results. We suggest that future

evaluations evaluate multiple configurations, rather than only a

single one.

4.2 RQ2: How do tools perform differently on
micro-benchmarks and real-world
datasets?

We compare the results across different datasets in terms of both

performance and precision/F-measure. We have observed that real-

world datasets draw out more exaggerated impacts of configurations

than the micro-benchmark, in terms of both performance and preci-

sion.

471

The Impact of Tool Configuration Spaces on the Evaluation of Configurable Taint Analysis for Android ISSTA ’21, July 11–17, 2021, Virtual, Denmark

(a) FlowDroid.

(b) DroidSafe.

Figure 3: Performance, number of true and false positives

for two-way and default configs on FossDroid.

First, in terms of performance, the tools’ run times show larger

variances on FossDroid and Google Play than on DroidBench 3.0.

This can be seen in Figures 2-3 for DroidBench 3.0 and FossDroid,

and the trend holds for Google Play. The fastest FlowDroid two-way

configuration is 7.4x faster than the slowest two-way configuration

in DroidBench 3.0. This ratio becomes 16.4x and 37.3x in FossDroid

and Google Play, respectively. The variance appears to scale with

the size of target app. The median program size for DroidBench 3.0

is 182KB, versus 568KB for FossDroid and 31.3MB for Google Play.

This trend also exists for DroidSafe’s configurations in Figures 2b

and 3b. More importantly, larger programs exaggerate performance

issues to such an extent that tools may no longer be scalable. For

example, FlowDroid was able to analyze every DroidBench 3.0 app

within the timeout (10 minutes), but hit the 2-hour timeout on

FossDroid and Google Play in 5% and 24% of runs, respectively.

In terms of quality measurements, in Figure 2a, the F-measure

values for all FlowDroid’s configurations are greater than 0. This

means that each configuration detected at least one true flow in

some apps in DroidBench 3.0. However, in Figure 3a, 28% of the

two-way configurations were not able to detect any true flows in

FossDroid. We investigated these configurations and found that

there were no single option settings that were always associated

with these configurations. This result suggests that while Droid-

Bench 3.0 is designed to test individual features that a tool supports,

real-world apps may require a set of supported features for a tool

to be useful. In Figure 3, we can see that in general, DroidSafe

finds more true positives in FossDroid than FlowDroid does, with

higher precision in some cases. This is a very different conclusion

about the relative quality of the two tools compared to the overall

Table 3: Analysis options selected by the lasso regularization.

Values are colored based on their absolute value relative to

other coefficients in that model. Cells with a . indicate that

the feature was not selected.

FlowDroid Precision Run time # Completed

𝜆 0.06 1.32E+06 0.16

aliasalgo . 1.90E+05 -0.06

codeelimination . 4.35E+05 -0.23

dataflowsolver 0.05 -1.15E+06 0.14

enablereflection -0.02 2.58E+06 -0.29

nocallbacks . -1.24E+06 0.12

onecomponentatatime . 6.86E+06 -0.75

onesourceatatime . 6.62E+06 -0.74

pathalgo -0.09 -2.89E+06 0.46

pathspecificresults . 2.16E+06 -0.36

staticmode . -7.08E+05 0.10

DroidSafe Precision Run time # Completed

𝜆 0.09 5.76E+06 1.04

analyzestrings_unfiltered . 2.69E+06 .

apicalldepth . 1.47E+04 .

kobjsens 0.02 . .

limitcontextforcomplex . -1.40E+07 0.55

limitcontextforgui <0.01 . .

noarrayindex . -6.23E+06 .

nofallback . 7.34E+06 .

nojsa . -8.09E+06 .

noscalaropts . -2.63E+06 .

nova . -1.14E+07 1.04

pta2 . . -0.02

F-measure for DroidBench 3.0 shown in Table 2, where FlowDroid

clearly performed better.

To summarize, the different results in the real-world datasets

and DroidBench 3.0 illustrate the large impacts of program sizes,

dataset designs, and language features on the behaviors of tools’

configurations. Specifically, the exaggerated impact that real-world

datasets have relative to DroidBench 3.0 demonstrate the urgent

need to create real-world benchmarks for the evaluation of con-

figurable taint analysis tools. While the full ground truths are not

known for the dataset we contribute, it can currently be used as a

precision benchmark, and can serve as the starting point for future

benchmarks.

4.3 RQ3: Which option settings affect tool
behavior?

We answer this question by performing linear regression with a

lasso regularization term as discussed in Section 3.We kept glmnet’s

default setting of generating a sequence of 100 𝜆 values. We tried

to select values of 𝜆 that achieved a Mean Square Error (MSE) near

the optimum, but selected fewer features, in order to draw more

general conclusions by reducing the risk that we overfit to our

data [42]. We observed that the smaller feature sets selected by

larger values of 𝜆 were typically subsets of the larger sets selected

by smaller 𝜆 values, so we interpret these options as being good

2Only configurations with pta ↦→ SPARK produced flows. As such, we did not include
pta in the regression model for the target precision.

472

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Austin Mordahl and Shiyi Wei

Figure 4: pathalgo settings plotted against precision. The top,

middle, and bottom of the box are the first quartile, median,

and third quartile, respectively. The vertical line is data out-

side of the interquartile range, and dots are outliers.

targets for a user to tune. The specific 𝜆 of each model along with

the associated coefficients are shown in Table 3. Using the statistical

models and data visualization, we make the following observations

and suggestions for tuning FlowDroid and DroidSafe on real-world

apps.

(1) pathalgo is FlowDroid’s most significant option for precision,

but behaves in a counter-intuitive way, indicative of a soundness

issue in its implementation. Figure 4 shows the settings of Flow-

Droid’s pathalgo option and the range of precision values they

achieved on the FossDroid benchmark. This setting controls the

computation of the path between source and sink. SOURCESONLY

is a "very fast context-insensitive implementation that only finds

source-to-sink connections, but no paths" [1]. CONTEXTINSEN-

SITIVE and CONTEXTSENSITIVE both build the taint paths, in a

context-insensitive and context-sensitive manner, respectively. We

determined two partial orders from reading the documentation:

CONTEXTSENSITIVE ⊑𝑃 SOURCESONLY and CONTEXTSENSI-

TIVE ⊑𝑃 CONTEXTINSENSITIVE. As shown in the figure, the result

ended up being the opposite. Upon investigation of our data, we

found this misbehavior was because of a soundness issue, such

that configurations with pathalgo ↦→ SOURCESONLY were able to

achieve very high precision but they tended to find very few flows

(and likewise for configurations with pathalgo ↦→ CONTEXTIN-

SENSITIVE). We explore partial order violations in more detail in

Section 4.4.

(2) FlowDroid’s dataflowsolver and enablereflection options show

important tradeoffs between precision and performance. As an exam-

ple, Figure 5 shows the tradeoff between precision and total run

time with regard to settings of dataflowsolver (i.e., the IFDS solver)

and enablereflection. The CONTEXTFLOWSENSITIVE (CFS) setting

in Figure 5a is associated with better precision than the FLOWIN-

SENSITIVE (FI) settings. We also see that the CFS setting appears

to be more stable with regard to the run time, as configurations

with FI selected demonstrate a higher run time variance. In Figure

5b, it is interesting that disabling reflection handling in FlowDroid

(a less sound setting) resulted in higher precision. This is because

discovering more true positives by a more sound configuration can

come at the cost of producing more false positives. Thus, a user

analyzing different target programs should consider tuning these

options to balance the soundness, precision, and performance.

(a) dataflowsolver. (b) enablereflection.

Figure 5: The tradeoffs presented by settings of enablereflec-

tion and dataflowsolver in terms of precision and run time.

Figure 6: The settings of onecomponentatatime plotted

against total run times and completed apps.

(3) Several options across both tools show clear performance effects

without having a significant effect on precision. For example, Figure

6 shows that onecomponentatatime in FlowDroid (which controls

whether the tool analyzes all components together or analyzes

them one-by-one) is associated with a higher run time and fewer

completed tasks. Furthermore, as shown in Table 3, this option was

selected for total run time and completed apps, but not precision.

Thus, a user should leave this option disabled, along with disabling

onesourceatatime, disabling pathspecificresults, increasing the preci-

sion of staticmode (setting it to either CONTEXTFLOWINSENSITIVE

or CONTEXTFLOWSENSITIVE), enabling nocallbacks, setting codee-

limimation to NONE and aliasalgo to NONE. Note that the last three

settings are not the default settings of FlowDroid.

For DroidSafe, a similar trend as onecomponentatatime is ob-

served in limitcontextforcomplex. This option, which limits objects

with a points-to set of size > 100 to a heap context sensitivity of 1,

is associated with lower run time if enabled. Similarly, nova, which

disables DroidSafe’s string analysis, also leads to better run time.

As neither of these options appear to negatively affect precision, a

user may be able to improve their performance by enabling both of

these options (they are disabled by default). We also recommend

the user leave analyzestrings_unfiltered and nofallback disabled, set

apicalldepth to a low number, enable noarrayindex, enable nojsa,

and enable noscalaropts.

(4) No DroidSafe options strongly affect precision individually. Ta-

ble 3 shows that two options, kobjsens and limitcontextforgui, were

473

The Impact of Tool Configuration Spaces on the Evaluation of Configurable Taint Analysis for Android ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Figure 7: The settings of kobjsens plotted against precision.

1 Button button1= (Button) findViewById(R.id.button1);

2 button1.setOnClickListener(new View.OnClickListener() {

3 @Override

4 public void onClick(View v) {...}}

Figure 8: Extracted code fromDroidBench 3.0’s Button2 app.

1 for (SootClass sc : Scene.v().getApplicationClasses()) {

2 if (sc.isConcrete()) {

3 for (SootMethod sm : sc.getMethods()) {

4 if (sm.isConcrete()) {

5 analyzeMethodForCallbackRegistrations(null, sm);

6 // ... }}}}

Figure 9: Callback search code of FlowDroid’s FAST setting.

selected by the lasso model, but neither of them have large coeffi-

cients. Figure 7 shows the relation between kobjsens settings (the

option that determines the level of object sensitivity in DroidSafe)

and precision. The lack of a strong effect is shown in the figure,

where kobjsens settings less than 18 do not appear to be associated

with a significant difference in precision. kobjsens ↦→ 18 is associ-

ated with an increase in precision ś this is a similar situation to that

of Figure 4, where these configurations typically found only a single

true positive, again indicating some soundness issue with higher

levels of kobjsens. Although no single options strongly affected

precision, Figure 3b does show large variance in precision values

across configurations. This indicates that there may be option in-

teractions that are significant. We did not test these interactions

because our data were not large enough.

To summarize, we made three important findings. First, two

FlowDroid options (dataflowsolver and enablereflection) present in-

teresting tradeoffs, and a user should consider tuning them for their

analysis. Second, several options across both tools make important

impacts on performance without an apparent effect on precision,

so users should consider using the faster option by default. Finally,

some options across both tools exhibit unexpected behavior in-

dicative of an implementation bug. These are discussed next as

violations of partial orders.

4.4 RQ4: How many options misbehave?

To answer RQ4, we compared the different settings of each option

to each other in terms of the number of false positives and known

false negatives from the DroidBench 3.0 and FossDroid data. For

each precision or soundness partial order, we checked whether it

was satisfied or violated in the single-option configurations. For

example, the precision partial order 𝑣11 ⊑𝑃 𝑣21 is violated if 𝑃𝐷 [𝑐1 ↦→

𝑣11] produces more false positives than 𝑃𝐷 [𝑐1 ↦→ 𝑣21], or either

configuration misses true positives that the other detects because

precision partial orders imply soundness partial orders.

We observed that while most partial orders are preserved in the

experimental data, there are 41 unique violations of partial orders

concerning 21 options across both tools. In total, we found 13 viola-

tions in DroidSafe (including 3 in DroidBench 3.0) and 28 violations

in FlowDroid (including 23 in DroidBench 3.0). Of the 28 violations

in FlowDroid, 6 were precision violations and 22 were soundness

violations. Of DroidSafe’s 13 violations, 3 were precision violations

and 10 were soundness violations. We only count a violation if nei-

ther setting timed out and if the defined partial order was violated.

Furthermore, although partial orders themselves are transitive, we

do not record violations that occur between two settings that are

only associated transitively in order to avoid duplicate results. Fi-

nally, we only count numeric options’ partial orders once even if

violations occur between multiple settings.

We believe these violations are caused by issues in the tool

implementation or the misinterpretation of the intended behavior

of an option. We have recorded all the violated partial orders in

the release artifacts [32]. We reached out to the developers of the

tools regarding these violations, and none indicated that they were

aware of these issues.3

We investigated the root causes of some of these violations, and

spend the rest of this section giving a case study of one violation

between the DEFAULT and FAST settings of FlowDroid’s callback-

analyzer option. According to FlowDroid’s documentation, the

DEFAULT option only collects reachable callbacks in the call graph,

while FAST includes all callbacks. Based on this, we identified the

partial order DEFAULT ⊑𝑃 FAST while both settings are sound.

However, in our results, we identified a violation, in which FAST

was less sound than DEFAULT.

Upon further investigation of the implementation of FlowDroid,

we found that this misbehavior was caused by the FAST callback

analyzer not associating anonymous callback methods with the

lifecycle classes in which they are defined. A common paradigm

to define callback handlers is to create them by overriding meth-

ods within anonymous classes. As shown in Figure 8, a button’s

onClick method is specified through an anonymous subclass of

View.OnClickListener(). We found that the FAST callback analyzer

cannot detect flows in which (1) the sink is within one of these

callback definitions, and (2) tainted data propagates through an

attribute of the outer class (in this case, Button2).

We identified the root cause of this issue as the way the FAST

callback analyzer scans for classes. As shown in Figure 9, the FAST

callback analyzer simply searches through the methods of each

class for callback registrations. On line 5, it passes null as the first

parameter to analyzeMethodForCallbackRegistrations. This parame-

ter is the lifecycle class, which in the case of the onClick callback on

line 4 of Figure 8 would be the outer class (Button2). Since the FAST

analyzer does not provide this information on the class hierarchy,

the analysis cannot detect that data from a source elsewhere in

3A developer of DroidSafe did reply, theorizing that different configurations may cause
a change in internal analysis heuristics that might explain the unexpected results.

474

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Austin Mordahl and Shiyi Wei

Button2 can flow into this callback. The DEFAULT setting’s im-

plementation uses a worklist algorithm that does retain this class

hierarchy information, so it can track data from the outer class into

the onClick method.

In summary, our definition of partial orders allowed us to system-

atically test the configuration spaces of FlowDroid and DroidSafe

and identify violations that indicate implementation errors. Our

case study demonstrates a specific case of misbehavior that we

were only able to identify by testing multiple configurations with

these partial orders. The number of partial order violations across

FlowDroid and DroidSafe point to poor testing of non-default con-

figurations. We suggest that future configurable tool evaluations

take advantage of the partial orders and our experimental setup to

test tools’ correctness.

5 THREATS TO VALIDITY

There are several potential threats to the validity of our study. First,

the datasets may not be representative of programs that tool users

are interested in. Our mitigation is to use a well-known micro-

benchmark and popular apps from two real-world app repositories.

Second, we conducted three repetitions of the experiments, and

thus performance variation may not be fully accounted for. While

more repetitions would add greater statistical assurance, each trial

takes an average of 505 machine days to run. We did observe vari-

ations in performance, but they were small and did not affect the

broader trends. We computed the run time variance of the three

trials of a configuration as (max-min)/median. The median variance

across all configurations is 10%. Third, the two-way configuration

samples may not capture all interactions in configuration options.

Research indicates that most behaviors are caused by the inter-

actions of a small number of options [41]. Because we ran every

two-way interaction, we believe we captured most of the tools’

behavior. Fourth, our manual classification may produce incorrect

results. We mitigated this risk assigning each flow to two students,

and resolving conflicts through unanimous decisions. Finally, our

defined partial orders may be incorrect because of the ambiguity in

tools’ documentation. We tried to minimize this risk by applying

our domain expertise and checking the tools’ implementations.

6 RELATED WORK

To the best of our knowledge, we present the first empirical study

that focuses on the configurations of Android taint analysis tools.

Our work is related to (1) evaluations and comparative studies of

Android taint analysis tools, (2) studies of configurations in Java

static analysis tools, and (3) software product lines (SPLs) research

that models performance of configurations.

Evaluations ofAndroid taint analysis tools. Pauck et al. [34]

evaluated whether six Android taint analysis tools fulfill the feature

promises of their default configurations across different datasets.

They contributed ReproDroid, which allows one to execute taint

analysis tools and view their results in the unified AQL-Answer

format. Qiu et al. [35] investigated the configuration options in

FlowDroid, DroidSafe, and Amandroid and tuned them so that the

tools supported the same language features. They then performed

their comparative evaluation on these configurations. Boxler and

Walcott [12] evaluated FlowDroid, IccTA, and DroidSafe on Droid-

Bench 3.0 and a selection of apps from F-Droid in order to compare

their quality. These studies have provided important insights and

benchmarks for the literature to better assess the state-of-the-art

of Android taint analysis, but all evaluate single configurations and

rely heavily on micro-benchmarks. We believe our study demon-

strates the pitfalls of using either of these methodologies.

Luo et al. [30] performed a qualitative evaluation of FlowDroid

on 1022 real-world applications, and developed COVA, a static an-

alyzer that identifies the conditions under which a tainted flow

would occur. The authors also contributed a synthetic benchmark

of 92 applications in order to evaluate COVA. ICC-Bench, released

with Amandroid by Wei et al. [43] is a micro-benchmark contain-

ing 24 apps that test whether Android taint analysis tools can

detect inter-app leaks. Bosu et al. [11] developed DIALDroid-Bench

with DIALDroid, which consists of 30 real-world apps that con-

tain known inter-app communication vulnerabilities. However, we

could not use this benchmark because its source code is unavailable,

and the data leaks are undocumented [34]. Similar to the past com-

parative studies [12, 34, 35], the evaluations of these tools do not

focus on the tradeoffs presented by the algorithmic configurations.

Studies of configurable Java static analysis tools. Smarag-

dakis et al. [39] investigated the performance/precision tradeoffs

of various context-sensitive analyses, including call-site, object,

and type sensitivities. Lhoták and Hendren [27] evaluated tradeoffs

among different abstractions of heap allocation sites in a points-to

analysis. Wei et al. [44] evaluated an abstract interpretation tool

with five configuration options. They studied 216 configurations

and found these options in the numeric and heap domains pre-

sented tradeoffs to analysis precision and performance. Our work

studies the significantly larger configuration spaces in Android

taint analysis tools.

Performance modeling in SPLs. Software product lines re-

search has modeled the performance impact of configurations in

other software, e.g., [19ś21, 37, 38, 46]. CART [19], DECART [20],

and Zhang et al.’s Fourier transformation-based approach [46] only

work on binary options, so they are not suitable to predict per-

formance of our taint analysis tools which use binary, numeric,

and enumerated options. SPL Conqueror [38] computes optimal

variants of a configurable piece of software based on a user-defined

non-functional property. In later work, Siegmund et al. augmented

SQL Conqueror with the ability to produce performance-influence

models, which quantify the impact of configuration options on

the user’s performance metric [37]. Ha and Zhang contributed

DeepPerf, an approach to predict the performance of configurable

software systems based on deep neural networks [21]. While these

tools could have generated performance models that would take

the place of our regression models, we decided that lasso regres-

sion was more suitable as it is easy to understand and limits the

regression to select only a few significant options. That said, these

tools are good candidates to integrate into future work that tries to

automatically tune taint analysis tools based on a user’s needs.

475

The Impact of Tool Configuration Spaces on the Evaluation of Configurable Taint Analysis for Android ISSTA ’21, July 11–17, 2021, Virtual, Denmark

7 CONCLUSIONS

In this paper, we present the first systematic study on the large

configuration spaces of Android taint analysis tools. Our large-

scale study illustrates how two configurable Android taint analysis

tools, FlowDroid and DroidSafe, behave under different configura-

tions. We ran both tools on open-source real-world applications and

contributed a dataset of 756 manually classified flows to assist in

future evaluation of Android taint analysis tools. Our experiments

on sampled configurations demonstrate that methodologies that

only study a single configuration underestimate tool behavior and

provide a misleading picture of tool capabilities. We also found that

real-world datasets exaggerate the effects of configurations in a

way micro-benchmarks do not, motivating the need for large real-

world benchmarks to fully evaluate Android taint analysis tools.

Regarding individual configuration options, our statistical analysis

identified opportunities for users to tune the default configurations

to improve analysis results. Finally, our definition of partial orders

exposed 21 options that violate expected behavior with regard to

precision and soundness, which indicate the lack of systematic

testing of configuration options and the complicated tradeoffs that

configuration options can present.

The results of this study suggest several directions for future

work. First, we will develop automated approaches to assist the

tool users to effectively tune the analysis in the large configuration

spaces. Second, we believe there is a pressing need for well-designed

real-world benchmark suites, possibly using our dataset as a starting

point, to assess the quality of Android taint analysis tools. Third,

we plan to take advantage of the insights gained from partial orders

to explore new methodologies and develop infrastructures to more

systematically test configurable static analysis tools.

ACKNOWLEDGMENTS

This work is partly supported by NSF grants CCF-1816951 and

CCF-2047682, the NSF graduate research fellowship program, and

the McDermott fellowship program. We would also like to thank

Felix Pauck for his help on setting up ReproDroid.

REFERENCES
[1] 2019. FlowDroid. https://github.com/secure-software-engineering/FlowDroid.

72734bd629dfae2aacaf6e6973abfe73d035c979.
[2] 2020. APKMirror. https://www.apkmirror.com. Accessed 2020-02-10.
[3] 2021. Apktool. https://ibotpeaches.github.io/Apktool/.
[4] 2021. Automated Combinatorial Testing for Software (ACTS). https://www.nist.

gov/programs-projects/automated-combinatorial-testing-software-acts.
[5] 2021. DroidBench 3.0. https://github.com/FoelliX/ReproDroid.
[6] 2021. Fortify Static Code Analyzer. https://www.microfocus.com/en-us/solutions/

application-security.
[7] 2021. FossDroid. https://fossdroid.com.
[8] 2021. HCL AppScan on Cloud. https://www.hcltechsw.com/wps/portal/products/

appscan/home.
[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Edinburgh, United King-
dom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
259ś269. https://doi.org/10.1145/2594291.2594299

[10] Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2016.
Practical, formal synthesis and automatic enforcement of security policies for
android. In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 514ś525.

[11] Amiangshu Bosu, Fang Liu, Danfeng Yao, and Gang Wang. 2017. Collusive
data leak and more: Large-scale threat analysis of inter-app communications. In

Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. 71ś85.

[12] Dan Boxler and Kristen R Walcott. 2018. Static Taint Analysis Tools to Detect
Information Flows. In Proceedings of the International Conference on Software
Engineering Research and Practice (SERP). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp)., 46ś52.

[13] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. 2016. HornDroid: Prac-
tical and sound static analysis of Android applications by SMT solving. In 2016
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 47ś62.

[14] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn.
2003. Constructing Test Suites for Interaction Testing. In Proceedings of the 25th
International Conference on Software Engineering (Portland, Oregon) (ICSE ’03).
IEEE Computer Society, USA, 38ś48.

[15] Xingmin Cui, Jingxuan Wang, Lucas CK Hui, Zhongwei Xie, Tian Zeng, and Siu-
Ming Yiu. 2015. Wechecker: efficient and precise detection of privilege escalation
vulnerabilities in android apps. In Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. 1ś12.

[16] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based detection of android malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 576ś587.

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2010. Regularization
Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical
Software 33, 1 (2010), 1ś22. http://www.jstatsoft.org/v33/i01/

[18] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen,
and Martin C Rinard. 2015. Information flow analysis of android applications in
droidsafe. In NDSS, Vol. 15. 110.

[19] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wąsowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 301ś311.

[20] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
efficient performance learning for configurable systems. Empirical Software
Engineering 23, 3 (2018), 1826ś1867.

[21] H. Ha and H. Zhang. 2019. DeepPerf: Performance Prediction for Configurable
Software with Deep Sparse Neural Network. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 1095ś1106. https://doi.org/10.1109/
ICSE.2019.00113

[22] Wei Huang, Yao Dong, AnaMilanova, and Julian Dolby. 2015. Scalable and precise
taint analysis for android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis. 106ś117.

[23] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. 2008. Implicit Flows:
Can’t Live with ’Em, Can’t Live without ’Em. In Information Systems Security,
4th International Conference, ICISS 2008, Hyderabad, India, December 16-20, 2008.
Proceedings (Lecture Notes in Computer Science), R. Sekar and Arun K. Pujari
(Eds.), Vol. 5352. Springer, 56ś70. https://doi.org/10.1007/978-3-540-89862-7_4

[24] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android taint flow analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis. 1ś6.

[25] Ondřej Lhoták. 2006. Program analysis using binary decision diagrams. Vol. 68.
[26] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using

SPARK. In Proceedings of the 12th International Conference on Compiler Construc-
tion (Warsaw, Poland) (CC’03). Springer-Verlag, Berlin, Heidelberg, 153ś169.

[27] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of Context-
Sensitive Points-to Analysis Using a BDD-Based Implementation. ACM Trans.
Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008), 53 pages. https://doi.org/10.
1145/1391984.1391987

[28] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280ś291.

[29] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
Taming Reflection to Support Whole-Program Analysis of Android Apps (ISSTA
2016). Association for Computing Machinery, New York, NY, USA, 318ś329.
https://doi.org/10.1145/2931037.2931044

[30] L. Luo, E. Bodden, and J. Späth. 2019. A Qualitative Analysis of Android Taint-
Analysis Results. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 102ś114.

[31] AnaMilanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object
Sensitivity for Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. 14,
1 (Jan. 2005), 1ś41. https://doi.org/10.1145/1044834.1044835

[32] Austin Mordahl and Shiyi Wei. 2021. The Impact of Tool Configuration Spaces
on the Evaluation of Configurable Taint Analysis for Android. https://doi.org/10.
5281/zenodo.4729325

476

https://github.com/secure-software-engineering/FlowDroid
https://www.apkmirror.com
https://ibotpeaches.github.io/Apktool/
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://github.com/FoelliX/ReproDroid
https://www.microfocus.com/en-us/solutions/application-security
https://www.microfocus.com/en-us/solutions/application-security
https://fossdroid.com
https://www.hcltechsw.com/wps/portal/products/appscan/home
https://www.hcltechsw.com/wps/portal/products/appscan/home
https://doi.org/10.1145/2594291.2594299
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1109/ICSE.2019.00113
https://doi.org/10.1109/ICSE.2019.00113
https://doi.org/10.1007/978-3-540-89862-7_4
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/2931037.2931044
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.5281/zenodo.4729325
https://doi.org/10.5281/zenodo.4729325

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Austin Mordahl and Shiyi Wei

[33] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing.
ACM Comput. Surv. 43, 2, Article 11 (Feb. 2011), 29 pages. https://doi.org/10.
1145/1883612.1883618

[34] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do android taint analysis
tools keep their promises?. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 331ś341.

[35] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the analyzers: Flow-
droid/iccta, amandroid, and droidsafe. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 176ś186.

[36] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedu-
ral Dataflow Analysis via Graph Reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Fran-
cisco, California, USA) (POPL ’95). Association for Computing Machinery, New
York, NY, USA, 49ś61. https://doi.org/10.1145/199448.199462

[37] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-influence models for highly configurable systems. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. 284ś294.

[38] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner,
Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward optimization of
non-functional properties in software product lines. Software Quality Journal 20,
3 (2012), 487ś517.

[39] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011. Pick Your
Contexts Well: Understanding Object-Sensitivity. SIGPLAN Not. 46, 1 (Jan. 2011),
17ś30. https://doi.org/10.1145/1925844.1926390

[40] Ole Tange. 2020. GNU Parallel 20200522 (’Kraftwerk’). https://doi.org/10.5281/
zenodo.3841377 GNU Parallel is a general parallelizer to run multiple serial

command line programs in parallel without changing them.
[41] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.

2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Comput. Surv. 47, 1, Article 6 (June 2014), 45 pages. https://doi.org/
10.1145/2580950

[42] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267ś288.

[43] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2014. Amandroid: A precise and
general inter-component data flow analysis framework for security vetting of
android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. 1329ś1341.

[44] Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster, and Michael Hicks. 2018.
Evaluating Design Tradeoffs in Numeric Static Analysis for Java. In Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 653ś682. https:
//doi.org/10.1007/978-3-319-89884-1_23

[45] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static Control-Flow Analysis of User-Driven Callbacks in Android Applications.
In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, 89ś99.

[46] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki. 2015. Performance Prediction of
Configurable Software Systems by Fourier Learning (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 365ś373. https:
//doi.org/10.1109/ASE.2015.15

477

https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.5281/zenodo.3841377
https://doi.org/10.5281/zenodo.3841377
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://doi.org/10.1007/978-3-319-89884-1_23
https://doi.org/10.1007/978-3-319-89884-1_23
https://doi.org/10.1109/ASE.2015.15
https://doi.org/10.1109/ASE.2015.15

	Abstract
	1 Introduction
	2 Investigation of Analysis Options
	3 Experimental Design
	4 Experimental Results
	4.1 RQ1: What do evaluations that focus only on a single configuration miss?
	4.2 RQ2: How do tools perform differently on micro-benchmarks and real-world datasets?
	4.3 RQ3: Which option settings affect tool behavior?
	4.4 RQ4: How many options misbehave?

	5 Threats to Validity
	6 Related Work
	7 Conclusions
	References

