
ECSTATIC: An Extensible Framework for Testing
and Debugging Configurable Static Analysis

Austin Mordahl Zenong Zhang Dakota Soles Shiyi Wei
Department of Computer Science

The University of Texas at Dallas

Richardson, TX, USA

{austin.mordahl, zenong, dakota.soles, swei}@utdallas.edu

Abstract—Testing and debugging the implementation of static
analysis is a challenging task, often involving significant manual
effort from domain experts in a tedious and unprincipled process.
In this work, we propose an approach that greatly improves the
automation of this process for static analyzers with configuration
options. At the core of our approach is the novel adaptation of
the theoretical partial order relations that exist between these
options to reason about the correctness of actual results from
running the static analyzer with different configurations. This
allows for automated testing of static analyzers with clearly defined
oracles, followed by automated delta debugging, even in cases
where ground truths are not defined over the input programs. To
apply this approach to many static analysis tools, we design and
implement ECSTATIC, an easy-to-extend, open-source framework.
We have integrated four popular static analysis tools, SOOT,
WALA, DOOP, and FlowDroid, into ECSTATIC. Our evaluation
shows running ECSTATIC detects 74 partial order bugs in the
four tools and produces reduced bug-inducing programs to assist
debugging. We reported 42 bugs; in all cases where we received
responses, the tool developers confirmed the reported tool behavior
was unintended. So far, three bugs have been fixed and there are
ongoing discussions to fix more.

Index Terms—Program analysis, testing and debugging

I. INTRODUCTION

Static analysis is a useful tool to discover software bugs.

But there is no one-size-fits-all static analysis that can handle

all types of target programs. Thus, many well-known static

analyzers (e.g., FlowDroid [1], SOOT [2], DOOP [3], and

WALA [4]) implement configuration options to allow the

developers or users to tune the analysis in order to achieve the

sweet spot between precision, soundness, and scalability on

their target programs.

However, the resulting large configuration space also makes

it more difficult to ensure the correctness of the analysis

implementations. A key challenge towards automated testing

of static analyzers is the lack of an easy-to-obtain oracle.
Each configuration of a static analyzer may be expected to

produce different results analyzing the same program. This

means that the tool developers have to manually confirm the

expected results for each configuration on every test program,

which is infeasible. Indeed, a recent study [5] shows that

implementations of analysis options are poorly tested, finding

potential bugs in multiple configurations of FlowDroid.

These potential bugs were discovered thanks to the definition

of partial orders of analysis options, i.e., relations between

the settings of an analysis option that specify the expected

behavior of the tool with regard to the true and false positives

reported [5]. These partial orders make up for the lack of an

oracle for various configuration options, by allowing issues to

be discovered by comparing two configurations that differ only

by a single option setting and finding violations of expected

behavior, which are indicative of bugs in the analysis tool.

While being a promising direction, their work is limited in

improving the reliability of static analysis implementations.

First, there is no evidence that their experiments using manually

constructed configurations on two Android taint analysis tools

can be automated and extended to other static analyzers. Second,

there is no confirmation if the detected violations of partial

orders are indeed bugs and if/how they can be useful for

debugging. Third, their experiments require input programs

with ground truths or classified results, which may not be

available for many analysis clients.

In this work, we present a new general approach and

framework that automatically tests and debugs configurable

static analysis. Our key idea is to leverage the knowledge

of tool configurations and partial orders for the automation
of test generation, bug identification, and debugging. We

propose novel partial order aware testing and delta debugging

approaches, and extend the definition of a partial order

and a violation to allow bug finding without ground truths
(Section III). Our approach takes as inputs (1) a grammar

that lists the tool options and their settings, (2) a specification

of the partial orders, and (3) a set of programs with (e.g.,

DroidBench [6]) or without (e.g., DaCapo [7]) ground truths.

To detect implementation bugs in tool configurations, we

propose a two-staged testing approach. First, based on a

tool’s default configuration, we create all partially-ordered

configurations (i.e., configurations that differ only by a single

option setting) that are defined in the partial order specification.

These configurations are run on all the input programs to detect

violations of defined partial orders. The second stage randomly

and iteratively generates and tests configurations to detect

new partial order bugs that only exist under certain option

interactions. This stage consists of four steps: (1) A grammar-

based fuzzer is used to generate seed configurations, which

are randomly selected for testing. (2) The seed configuration

is mutated to create partially-ordered configurations based on

a set of partial orders which have not yet exhibited a violation

550

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00056

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

56

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

on any input program. (3) The mutated configurations are run

on a set of input programs to detect partial order violations. (4)

The violation detection results are used as feedback to remove

partial orders that have exhibited violation(s). Steps (1)-(4) are

repeated until a given timeout is reached. We implement and

evaluate two variations of this random testing stage that differ in

how they select partial orders and input programs. One, at each

step, randomly samples a small number of partial orders and

input programs, making it lightweight and suitable for testing

many partially-ordered configurations based on different seeds.

The second is a more exhaustive approach, using all partial

orders and input programs at each iteration.
To assist the debugging of each partial order violation, we

develop a novel violation-aware delta debugger that reduces the

input programs into bug-inducing features. Our delta debugger

is novel in two aspects. First, it is the first to adapt delta

debugging to metamorphic testing of static analyzers. At each

delta debugging iteration, our approach attempts to run two

partially-ordered configurations of an analysis tool on a reduced

program and detect whether the violation still exists. Second, to

address the challenges in efficiency (i.e., expensive compilation

and analysis passes), our delta debugger runs in two passes: first,

a coarse-grained class-level reduction [8], and then hierarchical

delta debugging [9] based on an abstract syntax tree.
To allow the proposed approach to be generally applied to

many static analysis tools, we develop an open-source frame-

work, ECSTATIC (Section IV). We design ECSTATIC with

the goals of producing an easy-to-use, scalable, reproducible,

and highly extensible framework. We achieve these goals by

(1) defining clear interfaces for specifying tools and input

programs such that a new tool or input program can typically

be integrated by writing only dozens of lines of code, (2)

structuring the code so that each phase can be run in parallel,

and (3) containerizing each analysis tool inside a Docker [10]

container for reproducible environments. ECSTATIC is available

at https://doi.org/10.5281/zenodo.7577909.
We integrate four popular static analysis tools (FlowDroid,

SOOT, WALA, and DOOP) and four benchmarks (DaCapo,

DroidBench, CATS [11], and FossDroid [12]) into ECSTATIC.

Running ECSTATIC, we detect 74 partial order bugs across

the four tools. While most of these bugs were found in the

first testing stage, the two variants of the random testing stage

were able to collectively detect 10 new partial order bugs.

The violation-aware delta debugger was able to reduce input

programs to as little as 1% of their original sizes, with an

average of 50% reduction on real-world programs. We also

reported some of these bugs to tool developers, and in every

case where the developers responded, received confirmation

that our approach uncovered unexpected behavior, leading to

three bug fixes in FlowDroid and ongoing discussion regarding

a fix for WALA.
This paper made the following contributions:

• A new general approach that provides automated support

for tool developers to test and debug static analysis,

leveraging the knowledge of tool configurations and option

partial orders throughout its design.

1 // InterproceduralConstantValuePropagator.java
2 protected void internalTransform(...) {
3 ...
4 if (removeSideEffectFreeMethods) {
5
6 boolean remove = callee.getReturnType() == VoidType

.v() && !hasSideEffectsOrReadsThis(callee);

7 - remove |= !hasSideEffectsOrCallsSink(callee);

8 + remove &= !hasSideEffectsOrCallsSink(callee);

9 if (remove) {
10 Scene.v().getCallGraph().removeEdge(edge);

Fig. 1: Excerpt of FlowDroid code that shows an implemen-

tation error in its codeelimination option, and the fix the tool

developer made using ECSTATIC’s bug reports [13].

• An open-source, extensible framework, ECSTATIC, that

enables easy integration of new analysis tools and bench-

marks for configuration aware testing and debugging.

• The integration of four popular tools and four benchmarks

in ECSTATIC, and an evaluation on the performance of

our approach, showing its effectiveness of detecting actual

bugs and producing reduced bug-inducing programs.

II. BACKGROUND AND MOTIVATION

In this section, we first use an example to illustrate the

challenges when testing and debugging a static analyzer. We

then introduce the background of a key concept, partial orders
of analysis options, which we adapted and improved upon to

mitigate these challenges.

A. Motivating Example

We use an example from FlowDroid to illustrate the

challenges of detecting and debugging bugs in static analysis

tools. This bug was detected by ECSTATIC, reported to the tool

maintainer, and is fixed in the current version of the tool [13].

The bug extracted in Figure 1 shows a logic error in the

implementation of FlowDroid’s codeelimination option. The

default setting of this option, PROPAGATECONSTS, performs

constant propagation. The REMOVECODE setting of this

option, in addition to constant propagation, performs a pre-

analysis to remove any methods from the call graph that (1)

have a void return type, (2) do not refer to the this variable, (3)

do not have side effects, and (4) do not call a sink method. This

should be a sound optimization because methods satisfying all

four conditions should not affect the detection of taint flows.

However, there was a logic error in its implementation. In

line 6 of Figure 1, the boolean variable remove is used to

determine if a method (i.e., callee) should be removed from

the call graph. Line 6 correctly implements the logic to satisfy

the first three conditions to remove a method by checking the

return type and calling the method hasSideEffectsOrReadsThis.
In line 7, it calls the method hasSideEffectsOrCallsSink, to
decide if the fourth condition–“do not call a sink method”–is

satisfied. This method also rechecks the value of hasSideEffects
as computed by hasSideEffectsOrCallsSink. However, by using

the OR operator |=, it can remove a method that only meets

conditions (1), (2), (3) or only meets conditions (3) and (4).

551

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

Instead, the AND operator &= should be used (as shown in

the fix in line 8). This bug is useful to demonstrate several

challenges in testing and debugging a static analysis tool.

Challenge 1: This erroneous code may be executed

only in some configurations of FlowDroid. In line 4, the

field removeSideEffectFreeMethods guards the execution of

the code that contains the logic error. This field is only set

to true if the configuration sets the codeelimination option

to REMOVECODE and does not set the implicit option to

ALL. This suggests that the tool developers potentially need

to test many configurations of a static analysis. This is almost

impossible to achieve, as testing the correctness of any one

configuration is a daunting task (see below).

Challenge 2: Appropriate input programs with oracles
are not easy to obtain when testing a static analysis tool. To

catch the above error, FlowDroid, using a configuration that

can execute the erroneous code, needs to be run on an input

program that contains a method that meets only conditions

(1)-(3) or (3)-(4). Indeed, when searching DroidBench, the

most popular benchmark for Android taint analysis, we found

only 1 out of 190 programs (ActivityLifecycle1) contains a

method that would allow the detection of this logic error.

Challenge 3: Debugging to understand the cause of an

implementation error in a static analyzer is a challenging task.

While researchers have developed some tools to support such

a task [14], [15], it still involves extensive manual efforts.

For the example in Figure 1, after observing that FlowDroid

unexpectedly does not produce a tainted flow in an input

program (e.g., ActivityLifecycle1), the developer is likely to

find that there is a missing call graph edge to the method that

calls the sink method. However, the task of determining the

cause of the missing edge requires the developer to understand

both FlowDroid’s code and the input program, requiring the

developers to inspect potentially large codebases with their

domain knowledge.

B. Partial Orders of Analysis Options

We aim to mitigate the above challenges through an approach

that greatly improves the automation of the testing and

debugging of static analysis. At the core of our idea is the

adaptation of a concept called analysis options partial orders.
The idea of using partial orders to describe the relationship

between settings within a configuration option of static analysis

tools was recently presented by Mordahl and Wei [5], which

they use to study the impact of configuration options on the

results of two Android taint analysis tools.

The basic idea of these partial order relationships is that

increasing the soundness of an analysis should not remove true

positives and increasing the precision of an analysis should not

introduce new false positives, compared to a less sound/precise

configuration, respectively. Let C be a configuration of an

analysis tool, and let C[oi] return the setting of option oi in C.

Given two configurations C1 and C2, We say that C1 �S C2

(read as “C1 is at least as sound as C2”) if (1) there exists one

and only one option, oi, such that C1[oi] �= C2[oi]; and (2)

C1[oi] implements an analysis that is expected to be at least as

sound as that implemented by C2[oi] (alternatively written in

terms of the settings C1[oi] �S C2[oi]). For precision partial

orders (denoted �P), the definition is the same except that

“sound” is replaced with “precise” in (2).

Using these definitions, Mordahl and Wei found potential

bugs in two Android taint analysis tools by comparing the

results of different configurations. Their idea is an instantiation

of metamorphic testing [16], [17] using these partial orders.

Metamorphic testing is an approach in which a known relation

between the outputs of related inputs to some piece of software

is used as an oracle for testing. For our situation, let f(Ci, p)
be the set of results obtained by running an analysis tool with

configuration Ci and input p, and let TP and FP extract the

set of true and false positives, respectively. The metamorphic

relations are Ci �S Cj → TP (f(Cj , p)) ⊆ TP (f(Ci, p)),
and Ci �P Cj → FP (f(Ci, p)) ⊆ FP (f(Cj , p)). Thus,

a precision bug exists if Ci �P Cj ∧ (FP (f(Ci, p)) −
FP (f(Cj , p)) �= ∅), and a soundness bug exists if Ci �S Cj∧
(TP (f(Cj , p))− TP (f(Ci, p)) �= ∅) for any p. Furthermore,

Mordahl and Wei introduced the concept of implicit soundness
partial orders to capture the fact that changing precision is

generally not expected to alter the set of true positives. As such,

when there is a precision partial order C1 �P C2, they add the

implicit soundness partial orders C1 �S C2 and C2 �S C1.

Despite the definition of partial orders of analysis options,

Mordahl and Wei have not addressed the challenges of testing

and debugging static analysis, discussed in Section II-A. First,

their definition of partial orders is limited, as it requires known

ground truths in the input programs or the analysis results

be classified to detect violations. This requirement is often

infeasible for large programs and/or for certain analyses (e.g.,

call graph analysis) (Challenge 2). Second, their goal of using

partial orders is to study the robustness of two Android analysis

tools; it is not clear how the violations may assist the debugging

process of static analysis tools (Challenge 3). Moreover, they

have not presented an automated and scalable approach to test

the tool configurations in the study; their approach was largely

manual, requiring test environments tailor-made to the tools

they were evaluating (Challenge 1).

III. CONFIGURATION AWARE TESTING AND DEBUGGING

We propose a holistic approach to improve the automation

of testing and debugging for static analysis, leveraging partial

orders of analysis option in all of its components. An overview

of our approach is depicted in Figure 2. A key design

decision to make such an approach generally useful is to make

reasonable assumptions about the inputs that are feasible for

tool developers to obtain. Our approach expects three inputs.

First, a configuration grammar of the target tool which

specifies all of its options and their settings. Second, a

specification of all the precision and soundness partial orders in

a tool’s configuration space. This specification acts as the oracle
of the relative expected behavior between tool configurations.

We argue that formally specifying a tool’s configuration space

and partial orders of its options not only increases the chance

for these configurations to be tested automatically; it also

552

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of configuration aware testing and debugging for static analysis. Gray boxes indicate steps for which we offer

two variations in implementation and evaluation (see Section III-B).

allows the users and even the developers to better understand

the capabilities of static analysis tools with less ambiguity. The

third input is a set of input programs. We improved the partial

order definition to make our approach flexible enough to detect

bugs with or without ground truths or labeled results (Section

III-A). This improvement makes most existing static analysis

benchmarks suitable as input to our approach.

As shown in Figure 2, the partial order aware testing phase

has two stages. The base configuration testing stage starts

with the default configuration of the tool. It generates a set of

partially-ordered configurations by mutating one setting from

the default configuration for each setting in the partial order

specification. It then runs the static analysis tool using each

partially-ordered configuration on each input program. The

results of these runs can be checked according to the defined

partial orders to identify violations. Note that violations in some

partial orders may only be observed when other options are

set (i.e., there are interactions in the configuration options). To

address this issue, we propose a second stage that randomly and

iteratively tests partial orders on more configurations (Section

III-B). The output of the testing phase is a collection of partial

order bugs, each containing violations (i.e., a specific pair of

configurations, the input program, and the partial order that

was violated) grouped by partial order.

For each detected partial order bug, we start the debugging

process. Violations are caused not only by the static analysis

tool, but also by features in the input program. The goal of

violation aware delta debugging is to reduce input programs

to their violation-inducing features while still preserving the

violations, in order to help the tool developers better localize the

causes of the violations (Section III-C). Overall, the outputs of

our approach are analysis results, partial order bugs/violations,

and reduced programs.

A. Improving Partial Order Definition

We make two improvements to Mordahl and Wei’s partial

order definition, with the goal of detecting partial order

violations in cases where ground truths in the input programs

are not known. As discussed earlier, this is critical for the

general applicability of our approach.

First, in addition to the implicit soundness partial orders

induced by an explicit precision partial order, we add an

TABLE I: Violation detection with (rows 2-5) and without (rows

6-7) ground truths. TP (C1) is shorthand for TP (f(C1, p)) for

some p. The first column shows the set relations between two

analysis results on program p, and the first row shows the

defined partial orders.

C1 �S C2 C1 �P C2

∧C2 �P C1 ∧C1 �S C2

∧C2 �S C1

TP(C1)− TP(C2) �= ∅ ∅ {C2 �S C1}
TP(C2)− TP(C1) �= ∅ {C1 �S C2} {C2 �S C1}
FP(C1)− FP(C2) �= ∅ ∅ {C1 �P C2}
FP(C2)− FP(C1) �= ∅ {C2 �P C1} ∅

C1 − C2 �= ∅ ∅ {C2 �S C1

∨C1 �P C2}
C2 − C1 �= ∅ {C1 �S C2 ∅

∨C2 �P C1}

implicit precision partial order induced by an explicit soundness

partial order. Consider the soundness partial order C1 �S C2;

in addition to the expectation that C2 should never produce

more true positives than C1, we also expect that the former

configuration should never produce more false positives than

the latter. In other words, increasing soundness should never

miss results that were previously present, whether true or false

positives. Thus, for the above soundness partial order, we

additionally add the implicit precision partial order C2 �P C1.

Second, consider the results of two configurations C1 and

C2 on an input program p. If f(C1, p) ⊆ f(C2, p), then

without ground truths, we can ascertain (TP (f(C1, p)) ⊆
TP (f(C2, p)))∨ (FP (f(C1, p)) ⊆ FP (f(C2, p))). Note that

these are the conditions for satisfying the partial orders

C1 �P C2 and C2 �S C1. So, although we cannot pinpoint the

violation to one partial order, if both partial orders are defined,

we can say that f(C1, p) �⊆ f(C2, p) is a violation of either

C1 �P C2 or C2 �S C1. We refer to all violations of a single

partial order as one partial order bug. While less precise than

Mordahl and Wei’s original approach, this approach addresses

Challenge 2 by allowing us to detect erroneous behavior without

ground truths. If we have ground truths defined for an input

program, we can fall back to Mordahl and Wei’s original

relations. Table I shows the possible violations produced by

comparing the results of two partially-ordered configurations,

both with and without ground truths.

553

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

1 protected void onCreate(Bundle savedInstanceState) {

2 - super.onCreate(savedInstanceState);

3 - setContentView(R.layout.activity_lifecycle1);

4 TelephonyManager telephonyManager =
5 (TelephonyManager) getSystemService(Context.

TELEPHONY_SERVICE);
6 String imei = telephonyManager.getDeviceId(); // source
7 URL = URL.concat(imei);
8 }
9 private void connect() throws IOException {

10 URL url = new URL(URL); // sink

Fig. 3: Excerpt of ActivityLifecycle1 from DroidBench.

B. Partial Order Aware Testing

We propose a two-staged testing approach that iteratively

constructs partially-ordered configurations, runs them on input

programs, and detects violations.

First, the base configuration testing stage starts with a default

configuration. This is because the default configuration and

those that are slight variations of it are most likely to be

what users initially try when using a static analysis tool. For

each defined partial order, we mutate the default configuration

to produce partially-ordered configurations. We then run the

static analysis on each input program with each generated

configuration, which produces a set of results. To detect

violations, we compare each pair of results on the same input

program from two partially-ordered configurations. We query

Table I to decide if a violation exists.

After the base configuration testing stage, we offer two

variations of random testing for different usage scenarios. This

stage uses different configurations than the default, so that

we can find partial order bugs that may be caused by the

interaction of multiple non-default options. As shown in Figure

2, the random testing phase consists of four steps. First, we

select a seed configuration from which we mutate. Second,

we select some number of partial orders that have not yet

exhibited violations. Third, we select some number of input

programs to test on. Finally, we follow a similar workflow as

the base testing phase; mutating the seed using the selected

partial orders, running them on the selected input programs,

and looking for violations. The two variations (which affect

the gray boxes shown in Figure 2) for selecting the partial

order set P and input program set I are as follows:

• Exhaustive Testing: P is the set of all partial orders for

which we have not yet found violations, and I is the full

set of input programs. This variant performs thorough

testing of each selected seed configuration.

• Non-exhaustive Testing: P is a small random subset of

partial orders and I is a small random subset of input

programs. This variant favors faster iterations of the testing

phase, by running only a few partial orders on a handful

of input programs.

Running example: The bug discussed in Section II-A

was detected by the base configuration testing phase. Flow-

Droid’s partial order specification includes a partial order

REMOVECODE �S PROPAGATECONSTS for the op-

tion codeelimination. In the base configuration testing phase,

we mutated FlowDroid’s default configuration to create 35

partially-ordered configurations, including a configuration that

sets codeelimination to REMOVECODE. Each configuration

was run on all DroidBench programs, and the results were

compared to look for partial order violations. On one program,

ActivityLifecycle1 (shown in Figure 3), the configuration that

sets REMOVECODE misses a true positive flow, from the

source on line 6 (getDeviceId) to the sink on line 10 (the

constructor of URL). Not shown is the app’s onStart callback,

which calls connect. The default configuration does report

this flow. Given the partial order REMOVECODE �S

PROPAGATECONSTS , Table I (row 3, column 2) shows

that the absence of the true positive indicates a violation. We

output this partial order, the two partially ordered configurations,

and this missed true flow as a violation.

C. Violation Aware Delta Debugging

The input program on which a violation is detected is a useful

artifact for the debugging process. However, the part of the

input program that induces a violation may be a small portion

of the program. Therefore we aim to adapt delta debugging [18]

to reduce input programs to violation-inducing features, which

presents two primary challenges. The first challenge is adapting

the delta debugging process to our approach. The second is

overcoming issues in efficiency.

To address the first challenge, we adapt delta-debugging to

be violation-aware. Specifically, when debugging a violation

between two configurations C1 and C2 on program P , the

delta debugger iteratively proposes a reduced program P ′, tries
to compile P ′, and if it can, it runs the static analyzer under

configurations C1 and C2 on P ′. Depending on the partial

orders between C1 and C2 (the first row in Table I) and the

type of violation (the cells in Table I), we say P ′ preserves
the violation only if the same set relation between the results

of C1 and C2 holds as in the first column in Table I.

Most delta debugging techniques could be adapted using

the above idea. However, the second challenge (efficiency)

arises because each iteration of delta debugging requires two

potentially expensive steps: first, we have to try to recompile the

altered source code; second, we have to run the static analysis

tool under two configurations if the code compiles. Both of

these steps can take a long time, making this process inefficient,

especially for large programs with many classes where we

expect the majority of changes to result in syntactically

incorrect programs.

We address this challenge by performing delta debugging at

different granularities. We start with a coarse-grained approach,

which we adapted from Kalhauge and Palsberg [8]. Their

approach works at a class-level granularity, applying a reduction

algorithm to transitive closures of the nodes in the class

dependency graph (CDG) in order to avoid failed compilations

due to removal of classes on which other classes depend. After

performing this initial reduction, we switch to a finer grained

approach based on Hierarchical Delta Debugging (HDD) [9],

which can reduce at statement-level granularity. We call this

554

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

ECSTATIC Backend

Tool-Specific Image

Input Program-Specific Container

Results
Storage

Build
Input Test Debug

2. Start tool- and
input program-

specific containers

Dispatcher

Configuration Spaces/
Partial Orders

Tool Dockerfiles

Input Program Scripts

1. Build
image for
each tool

Analysis
Results,

Violations,
Reduced
Programs

Input:
Tool names,

input program
names,
optional

parameters

Fig. 4: The architecture of ECSTATIC’s backend.

approach CDG+HDD, and describe the implementation in

Section IV-A.

Our delta debugging approach is, to our knowledge, the

first to implement either of these ideas; namely, applying delta

debugging to metamorphic testing of static analyzers, and

running delta debugging in two passes in order to improve

efficiency. Note that, as discussed in other delta debugging

works [18], [19], if there are multiple underlying root causes

in the analysis tool that could result in the same violation, our

approach cannot guarantee that the root cause of the violation

in the reduced program is the same as the root cause of the

violation in the original. In this case, the user can iteratively

apply the framework, fixing root causes until the violation is

no longer detected.

Running example: Figure 3 shows an example of the delta

debugger’s operation on ActivityLifecycle1. The delta debugger

was able to remove the two yellow lines in the onCreate method

which were unnecessary for the flow to be detected, leaving

only the code that is necessary to taint URL. In addition, the

delta debugger removed two omitted lines after the sink in the

method connect.

D. Limitations

Our approach cannot find all bugs in a static analyzer. As

we detect bugs by comparing the results of two configurations,

a bug that is common to all configurations cannot be found.

Bugs that are not reflected in the analysis results also cannot

be detected. For example, if there exists a bug in FlowDroid’s

implementation of the IFDS algorithm [20], it would likely

affect all configurations and would not be able to be detected

by our approach.

IV. ECSTATIC DESIGN AND IMPLEMENTATION

To demonstrate the generality and effectiveness of the

approach presented in Section III and to allow this novel partial

order aware approach to be easily adopted to test and debug

many static analysis tools, we design and implement ECSTATIC,

an open-source, extensible, easy-to-use, and reproducible

framework. ECSTATIC’s design has two major parts: (1) a

backend that executes the testing and debugging phases on

the specified tools and benchmarks, and (2) a set of interfaces

to allow easy integration of tools and benchmarks. This was

inspired by the design of FuzzBench [21], an open-source

platform for evaluating fuzzers, developed by Google.

A. ECSTATIC Backend Design

The design goals of ECSTATIC’s backend are that it should

be (1) easy-to-use, (2) reproducible, and (3) scalable. Figure 4

shows its high-level architecture. ECSTATIC takes names of

tools and input programs, along with optional parameters that

control timeouts, random testing variant, and logging. The

dispatcher manages all testing and debugging executions with

three pieces of information of the integrated tools and input

programs: the tools’ partial orders and configuration spaces

(specified as JSON files), Dockerfiles [10] that build images for

each tool, and the scripts needed to build the input programs.

For each tool name the user supplies, the dispatcher first builds

a tool-specific Docker image, which downloads and builds the

tool. This image inherits from ECSTATIC’s base image, which

sets up ECSTATIC and its dependencies. Next, the dispatcher

starts a new Docker container, responsible for the testing and

debugging phases, for each specified benchmark in each tool-

specific image. The outputs (i.e., analysis results, detected

violations, and reduced programs) from different containers

are stored on the host machine, allowing the user to access

and analyze all results together.

The above architecture makes ECSTATIC’s backend satisfy

our design goals. By containerizing analyses inside of Docker,

ECSTATIC results are reproducible and platform independent.

ECSTATIC is easy-to-use and automated; users only need to

specify the names of the integrated tools and input programs.

ECSTATIC is also scalable, as we allow the testing and

debugging phases to be run in parallel, with the level of

parallelism tunable by the user.

Implementation: The dispatcher and testing phase were

implemented in 2855 lines of code in Python. In the random

testing phase, we re-used the GrammarCoverageFuzzer from

the Fuzzing Book [22] to generate seed configurations, and

implemented the violation detector following Table I.

We implemented the violation aware delta debugger in 2123

lines of code in Java. This delta debugger can be used for

debugging any static analysis tools targeting Java or Android

programs. The debugger performs both class-level CDG-based

debugging and AST-based hierarchical delta debugging, which

can reduce statement-level granularity. We use JavaParser [23]

to produce and manipulate the ASTs for both Java and Android,

and JDeps [24] to construct CDGs.

B. Tool and Input Program Integration Interface

ECSTATIC exposes interfaces to integrate new tools and

input programs with the goal of making the integration process

555

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

principled and easy. Using these interfaces, it typically requires

only dozens of lines of code to integrate a new tool or new

input programs (see Section IV-C).

Tool Integration Interface: To integrate a new tool in

ECSTATIC, four components need to be extended. First, a new

Dockerfile that sets up the analysis tool needs to be written.

Second, ECSTATIC’s interface called AbstractRunner needs

to be extended. This interface exposes 14 methods that can be

overridden to specify how the target tool is run. In most cases,

only 4 methods need to be overridden, in order to specify the

command to invoke the analysis tool, the commands to specify

the inputs and output, and the command to pass a timeout to

the analysis tool.

Third, ECSTATIC’s AbstractResultReader interface needs to

be extended. This interface specifies how to read and compare

the results of the target tool. AbstractResultReader requires the

tool results to be stored as a collection of individual results.

Typically, a common result form exists for different tools

performing the same client analysis. For example, all call

graph analysis results can be stored as a collection of call

graph edges. Therefore, if the new tool performs an analysis

that has already been integrated in ECSTATIC, the previously

extended AbstractResultReader can be reused.

Fourth, the partial orders of analysis options (used by the

violation detector) and configuration grammar (used by the

grammar-based fuzzer) need to be specified in two JSON files.

Input Program Integration Interface: In order to integrate

a new input program for testing, one simply needs to add

a build.sh script which downloads and builds the input

program. In order to perform delta debugging, one must

additionally supply an input program index as a JSON file.

This file lists, for each program, where its source code is, so

that ECSTATIC can pass this information to the delta debugger.

ECSTATIC also supports supplying ground truths with input

programs. ECSTATIC expects these ground truths to be speci-

fied in a format that can be read by the AbstractResultReader.
Providing ground truths will automatically switch ECSTATIC
from the ground-truth unaware violation detection method

specified in Section III to the ground-truth aware one.

C. Integrated Tools and Benchmarks

We have integrated four configurable static analysis tools

in ECSTATIC: FlowDroid [1], SOOT [2], WALA [4], and

DOOP [3]. SOOT, WALA, and DOOP are three widely used

frameworks for Java static analysis. For these three frameworks,

we called provided interfaces to build call graphs. FlowDroid

is the most popular static taint analyzer for Android.

Table II shows the number of analysis options and partial

orders in each tool (rows 2 and 3), as well as the number of

lines of code in each tool’s Dockerfile, reader, and runner (rows

4-6). Overall, it takes only a few lines of code to integrate a

tool into ECSTATIC: at most, 156 for FlowDroid.

The process of producing the configuration space specifica-

tion was roughly the same for each tool. Given an analysis

tool, we thoroughly explored the tool’s documentation and

used our domain expertise to identify options with clear

TABLE II: Configuration spaces of SOOT, WALA, DOOP,

and FlowDroid, and lines of code needed to integrate them

into ECSTATIC.

SOOT WALA DOOP FlowDroid
Options 20 5 20 22
Partial Orders 20 26 35 77

Dockerfile LoC 15 14 38 21
Reader LoC 12 19 26 16
Runner LoC 43 20 47 119
Total LoC 90 53 111 156

soundness/precision partial orders. We also performed a cursory

investigation of the code, in order to identify undocumented

options and additional documentation that could help infer

partial orders. This process typically took a handful of hours

to complete. This approach depends on the quality of the

documentation, which is often ambiguous, incomplete, or out

of date. Unfortunately, the alternative, a full code review to

understand the actual effect of each configuration option, is

infeasible. We hope our work motivates tool developers to

be more explicit about the configuration spaces in their tools,

which could directly be used as input to ECSTATIC.

SOOT’s configuration space is partitioned into “phases,”

which cover specific stages of the analysis. Such options are

specified as -p <phase> <option>:<setting>. For

example, configuration options for call graph construction

are accessed through the cg phase, which exposes various

subphases, such as SPARK (cg.spark). Each (sub)phase

may implement its own options. For example, setting -p
cg.spark types-for-sites:true causes types to be

used as elements of points-to sets, rather than allocation sites.

We only included configuration options that were in the cg
phase of SOOT, since our experiments focus on detecting bugs

in SOOT’s call graph construction. The options in this phase

had clear soundness/precision effects on the tool’s output.

WALA neither provides a command line interface for call

graph construction, nor does it have documentation about

the configuration options that are available. Thus, we used

the WALA library to implement our own call graph driver.

To discover configuration options, we did a code review to

identify options in WALA’s call graph construction phase,

and exposed those options in our driver. For example, the

cgalgo option exposes various call graph algorithms, such as

RTA [25], VTA [26], k-call-site-sensitivity [27], and k-object-
sensitivity [28], [29], while handleStaticInit controls whether

calls to static initializers are modeled.

For DOOP, we followed this methodology and were ex-

haustive with regard to the documented configuration space.

The vast majority of DOOP’s partial orders are within its

analysis option, which exposes 32 settings, covering various

heap abstractions, analysis types, and sensitivities (e.g., context-
insensitive, 1-call-site-sensitive+heap, 3-object-sensitive+3-
heap). Unlike other tools, DOOP does not allow the user

to supply parameterized context-sensitive analyses via its

command line interface.

For FlowDroid, we began from the configuration space

defined by Mordahl and Wei, which was produced using a

556

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

similar methodology [5]. We modified inaccurate partial orders

from this space. Specifically, we changed the partial order alias-
flowins.TRUE �P aliasflowins.FALSE to aliasflowins.FALSE
�S aliasflowins.TRUE, which we deemed congruent with the

behavior of FlowDroid after performing a code review.

Some tools’ configuration spaces contain conflicts between

option settings. Mordahl and Wei identified one type of

conflict, which they referred to as disablement. Given two

options, o1 and o2, a setting s1 ∈ o1 disables a setting

s2 ∈ o2 if ∀p, ∀C, f(C[o1.s1, o2.s2], p) = f(C[o1.s1], p).
1

They identified 5 disablement relationships in FlowDroid. We

do not explicitly handle these relationships, as they do not

impact the correctness of our approach; rather, they simply

result in wasted runs, as we compare the results of two

configurations which invariably behave the same. We did

encounter one non-disablement conflict in SOOT, wherein

enabling SPARK [30] via the cg.spark:on-fly-cg option throws

an exception when certain other options in the cg.spark
phase are set (e.g., cg.spark:VTA). We thus explicitly set

cg.spark:enabled to false in our SOOTRunner.
We have integrated four benchmarks in ECSTATIC:

CATS [11], [31], DaCapo [7], DroidBench [6], [1], [32],

and FossDroid [12], [5]. The CATS and DaCapo benchmarks

consist of Java programs, while DroidBench and FossDroid

consist of Android applications.

DroidBench is a popular benchmark consisting of 190 hand-

crafted Android APKs for which the ground truths are known.

The input programs are organized into 22 categories, each

aiming to test a taint analysis’ ability to handle certain elements

of Java and/or Android (e.g., Aliasing, Android Lifecycle, and

Reflection) [1]. This benchmark has been used in several works

to evaluate Android taint analysis tools [32], [5], [1], [33], [34].

DroidBench programs range from 8 to 236 lines of code. The

benchmark script for DroidBench consists of 8 lines of code.

The FossDroid benchmark consists of one real-world An-

droid application, Alarm Klock, originally collected by Mordahl

and Wei [5] from FossDroid [12], a repository for open-source

Android applications.2 True (16) and false (160) positives

of FlowDroid results running this program were manually

classified. This program consists of 3313 lines of code. The

benchmark script for FossDroid contains 12 lines of code.

CATS consists of 112 small Java programs, ranging from

2 to 36 lines of code in size. These microbenchmarks were

developed by Reif et al. in order to evaluate Java static analysis

tools [31]. This benchmark tests 15 Java features, including

Reflection, Virtual Calls, and Dynamic Proxies. The benchmark

script for CATS contains 8 lines of code.

DaCapo is a benchmark of open-source, real-world Java

programs [7] that has been widely used to evaluate static

analysis tools [29], [35], [36]. We integrated version 2006-10-

MR2, with modifications made to compile the programs with a

1C[o.s] should be understood as a configuration equivalent to C except
with option o set to s.

2Alarm Klock was chosen to be integrated because it was the most-labeled
program in the FossDroid dataset Mordahl and Wei created, suitable for using
as an input program with ground truths.

Java 8 compiler. The 11 input programs contain an average of

85K lines of code, and the script to integrate DaCapo contains

9 lines of code.

V. EVALUATION

In this section, we set up the experiments and present

evaluation results of our partial order aware testing and

debugging on the integrated tools in ECSTATIC.

A. Experimental Setup

Research questions: Our evaluation aims to answer three

research questions.

RQ1: How effective is ECSTATIC’s partial order aware
testing? To answer RQ1, we measured the number of partial

order bugs detected on each tool. We discuss how the

characteristics of the input programs affect ECSTATIC’s ability

to detect bugs, and analyze the effectiveness of each stage of

the partial order aware testing.

RQ2: How effective is ECSTATIC’s violation aware delta
debugging? To answer RQ2, we compared the sizes of each

input program before and after running the delta debugger to

measure the reduction rate, and we compared CDG+HDD with

a baseline that performs only hierarchical delta debugging on

the ASTs (HDD-only).

RQ3: Are ECSTATIC’s outputs useful for tool developers?
To answer RQ3, we discuss the bugs we reported to tool

developers and their responses, including fixes that have been

made.

Inputs to ECSTATIC: In our experiments, we ran all three

Java static analysis tools (SOOT, DOOP, and WALA) on both

Java benchmarks (DaCapo and CATS), and FlowDroid on both

of the Android benchmarks, DroidBench and FossDroid. The

timeouts were determined through preliminary experiments

on the performance of each tool. In the base configuration

testing stage and the delta debugging phase, for SOOT, WALA,

and FlowDroid, we used a timeout of 15 minutes for each

microbenchmark program (CATS and DroidBench) and 30

minutes for each real-world program (DaCapo and FossDroid).

DOOP executions took significantly more time and memory;

we used a 30-minute timeout for each CATS program and

a 45-minute timeout for each DaCapo program in the base

configuration testing stage. We ran both variants of the random

testing phase, each for 24 hours with 4 CPU cores and a

smaller timeout for each program. For non-exhaustive testing,

we randomly selected at most 4 programs and 2 partial orders in

each iteration. All programs and partial orders were sampled at

least once during non-exhaustive testing. Each random testing

phase was run twice; because we observed little variance

between the results of the two trials, we report the results

of the first trial. We ran the delta debugger with a 6-hour

timeout for each violation. We did not run the random testing

and delta debugging phases with DOOP due to its large memory

footprint.

557

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Partial order bugs detected in each tool by dataset.

The bar in each cell differentiates bugs detected in the base

testing phase (left) and bugs detected only in the random testing

phase (right).

SOOT WALA DOOP FlowDroid Total
Microbenchmark 3 | 0 0 | 0 0 | 0 26 | 2 29 | 2

Real-world 18 | 0 6 | 3 12 | 0 2 | 7 38 | 10
Total 18 | 0 6 | 3 12 | 0 28 | 7 64 | 10

Fig. 5: Number of programs that each partial order bug appeared

in.

Experimental environment: Experiments were conducted

within Docker containers based on a Ubuntu 20.04 image.

These containers were deployed across three machines. All

experiments for the testing phases of SOOT, WALA, and

DOOP, as well as random testing for FlowDroid were con-

ducted on a server with 376GB of RAM and 2 Intel Xeon Gold

5218 16-core CPUs @ 2.30GHz running Ubuntu 18.04. Base

configuration testing for FlowDroid was run on a workstation

with 32GB of RAM and an Intel Core i7-9800X CPU @

3.8GHz running Ubuntu 20.04. Delta debugging was conducted

on a server with 141GB of RAM and 2 Intel Xeon Silver 4116

12-core CPUs @ 2.10GHz running Ubuntu 16.04.

B. RQ1: Performance of Partial Order Aware Testing

Table III shows the number of partial order bugs detected

by ECSTATIC for each tool and benchmark. For Java tools,

microbenchmark refers to CATS; for FlowDroid, it refers

to DroidBench. Real-world refers to DaCapo for Java, and

FossDroid for FlowDroid.

Overall, ECSTATIC detected 74 partial order bugs in the

four tools. Even without ground truths in the input programs,

we were able to detect violations in SOOT, WALA, and DOOP.

The random testing phase was able to detect 10 additional bugs

in WALA and FlowDroid that were not detected in the base

testing phase; these are bugs that only appear under certain

option interactions not in the default configuration.

Over 24 hours, both exhaustive and non-exhaustive random

testing produced similar results. Exhaustive testing found 9 new

bugs, and non-exhaustive testing found 8 new bugs, with an

intersection of 7. The exhaustive variant alone was able to find

violations of the partial orders cgalgo.RTA �P cgalgo.CHA
and staticmode.NONE �P staticmode.DEFAULT in FlowDroid.

The non-exhaustive variant alone was able to detect a violation

in WALA of the partial order cgalgo.1-CFA �P cgalgo.0-1-
CFA. That the two approaches found different bugs in 24 hours

Fig. 6: Reduction rate on partial order bugs.

Fig. 7: A comparison showing the performance of CDG+HDD

compared to HDD-only on real-world benchmarks.

indicates the best strategy may be to run both approaches

concurrently. We confirmed this by running the random testing

experiments for 48 hours, and found cases in which a 24-

hour exhaustive testing run found violations that a 48-hour

non-exhaustive run missed, and vice-versa.

Figure 5 shows the number of programs each partial order

bug was detected in. 35 out of the 74 partial order bugs

were detected in only one program. Only 5 partial order bugs

appeared in programs in more than one dataset. This illustrates

the necessity of having large, diverse sets of programs on which

to test static analysis tools.

C. RQ2: Performance of Violation Aware Delta Debugging

Overall, the two-staged delta debugger (CDG+HDD) was

able to reduce programs by an average of 26% (7167 LoC),

as opposed to 14% when run with only hierarchical delta

debugging (HDD-only). This difference was even more dra-

matic for real-world programs; CDG+HDD reduced real-world

programs by an average of 50% (29187 LoC), compared to

6% by HDD-only.

Figure 6 shows the reduction rate per partial order bug,

colored by tool. We can see that the reduction rates for programs

that triggered violations in SOOT and WALA are higher on

average; this is due to all but one of FlowDroid’s inputs being

a microbenchmark. CDG+HDD did not have much impact

over HDD-only for microbenchmarks. This is expected, as

microbenchmarks usually have only a single class. Figure 7

compares reduction on real-world programs between HDD-

only and CDG+HDD. At most, the two-stage delta debugger

was able to reduce a program, hsqldb, by 99%, from 65487

lines to 29 (on this same case, HDD-only removed only 285

lines). This illustrates the utility of CDG+HDD for reducing

input program sizes to assist debugging, especially for large

real-world programs.

558

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

1 // AnonymousClass1.apk
2 LocationListener loLi = new LocationListener() {...};
3 locationManager.requestLocationUpdates(..., loLi);
4
5 // FlowDroid
6 for (Type possibleType : possibleTypes) {
7 if (possibleType instanceof AnySubType)
8 targetType = ((AnySubType) possibleType).getBase().

getSootClass(); }

Fig. 8: Code from DroidBench’s AnonymousClass1.apk, and
code from FlowDroid which failed to soundly model a callback

registration.

In terms of time, CDG+HDD delta debugging hit the 6

hour timeout for all but two real-world violations. These

were a violation on SOOT from hsqldb, which took 4.6

hours, and a violation on FlowDroid from Alarm Klock, which

took 42 minutes. The delta debugger never timed out on

microbenchmarks, taking a mean of 15 minutes and a maximum

of 57 minutes.

D. RQ3: Usefulness of ECSTATIC for Developers to Debug

We reported a subset of the violations detected in the base

testing phase to tool developers, so as not to flood developers

with many bug reports at once. Specifically, we reported all

the partial order bugs detected from the base testing phase

from the microbenchmarks for SOOT and FlowDroid (3 and

26, respectively), all 12 bugs for DOOP, and 1 bug for

WALA, totaling 42. For each bug, we provided developers our

expectation of the tool behavior, the unexpected differences

(i.e., the violation), and the associated input programs.

As of time of writing, we have heard back from developers

of FlowDroid, WALA, and DOOP. For FlowDroid, we have

received confirmation that four of the issues we raised were

real (with three having been fixed) and discussion on a fifth

is ongoing. For WALA, it was confirmed that we found

unexpected behavior, and we are still in communication with

the developer to try to find all of the root causes. Finally, for

DOOP, the developer acknowledged that the behavior was

unexpected, and confirmed it may be caused by a bug, but that

it could also be caused by internal heuristics DOOP uses to

control its performance. So far, no developer has communicated

with us that behavior we reported is intended or is otherwise

not indicative of a bug. Figure 1 shows part of the bugfix of a

FlowDroid bug; fixing this bug in the REMOVECODE setting

involved modifying 48 lines of code, contributed by the first

author of this paper and the FlowDroid developer.

Another bug we found in FlowDroid was in the imple-

mentation of CHA [37]. Figure 8 shows code from Droid-

Bench’s AnonymousClass1.apk, which creates an instance of

an anonymous subtype of LocationListener (line 2), and then

registers it as a callback (line 3). Lines 6-8 show code from the

analyzeMethodForCallbackRegistrations method of FlowDroid,

in which a method call that is known to register callbacks is

processed to find callback registrations. Normally, the value

of possibleTypes on line 6 is determined through a points-

to analysis; however, when CHA is activated, the points-to

analysis is replaced with a dummy implementation which uses

the AnySubType type to indicate that loLi may be any subtype

of LocationListener. As shown on line 8, instead of iterating

through these potential subtypes, FlowDroid unsoundly treats

the variable as if it could only be of type LocationListener.
This bug has been fixed thanks to a bug report we submitted,

and now AnySubTypes are correctly iterated through [38].

For the bug we reported in WALA, we were able to

uncover unsoundness in WALA’s modeling of reflection via a

violation of the partial order reflection.STRING_ONLY �S

reflection.NONE . One violation of this bug was detected in a

DaCapo program, hsqldb. Our delta debugger on this viola-

tion reduced hsqldb from 65487 to 818 lines of code, which

we provided to the developer to reproduce the bug. Specifically,

the problem is that STRING_ONLY enables logic to insert a

synthetic target representing the runtime target of a reflective

call if the parameter to the reflective call is a string con-

stant (e.g., class.forName(“java.lang.String”))
that WALA can resolve. However, when a configuration with

STRING_ONLY resolved a string, WALA did not model

any exceptions arising from the synthetic target. ECSTATIC
detected the missing edges out of catch blocks in runs with

STRING_ONLY.

VI. THREATS TO VALIDITY

There are several potential threats to the validity. First,

while the metrics we used to measure the effectiveness of

ECSTATIC have been adopted in previous work (e.g., input

size reduced by delta debugger [9]), these metrics may not

directly indicate a reduction in the manual debugging efforts

of tool developers. To mitigate this, we reported bugs to tool

developers using ECSTATIC outputs and show that they are

useful for fixing real bugs. Second, we only integrated tools

targeting Java-based languages. There could be unforeseen

hurdles to integrate analysis tools and benchmarks across

other programming languages. Third, our results may not fully

account for the randomness in the random testing phase. We

ran two trials and observed the variance was low. Fourth, the

partial order specification we used in the evaluation may not be

correct. In all the bugs we reported, no developer has reported

that our partial orders were incorrect. Furthermore, we hope this

work can inspire tool developers to be more explicit in defining

the expected behavior of different configuration options.

VII. RELATED WORK

Evaluation of Static Analysis Configurations: Mordahl

and Wei were the first to use partial orders to study bugs in two

Android taint analysis tools [5]. They defined partial orders

and found violations in these tools, indicating the necessity

of configuration aware testing. However, their work did not

address the challenges in testing and debugging static analysis,

as discussed in Section II-B. Our work is inspired by their idea

and proposes an automated process, adding partial order aware

testing that can exercise option interactions that do not occur

in the default configuration. Furthermore, we present violation

aware delta debugging to aid developers in fixing bugs.

559

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

Smaragdakis et al. formally modeled the design space

of object-sensitive analyses and evaluated the influences of

different object-sensitive analyses on precision and perfor-

mance [29]. Lhoták and Hendren empirically evaluated the

precision of context-sensitive analyses within SOOT [35]. Wei

et al. developed a Java numeric analysis based on WALA and

evaluated 216 configurations of their tool [36]. All three of

these works used the DaCapo benchmark for evaluation. Reif et
al. presented CATS to systematically evaluate the unsoundness

of call graph construction algorithms [31]. Other works focus

on evaluating FlowDroid and other Android taint analysis tools

against each other [1], [32], [34], [33], using the DroidBench

benchmark. We tested and debugged many tool configurations

evaluated in the above works and detected partial order bugs.

This result demonstrates that while past evaluations are useful

for comparing performances between tool configurations, they

lack the ability to test the correctness of tool implementations.

Furthermore, our goal in this work is not to compare tools, but

to provide a flexible framework to test and debug configurable

static analysis tools.

Testing and Debugging Static Analysis and Compilers: Do

et al. introduced VISUFLOW, a visual debugging environment

for FlowDroid [14]. Our approach complements their work

in that it provides specific diagnostic information for a bug.

Andreasen and Møller diagnosed JavaScript analyses that

suffered from imprecision and high memory usage when

analyzing jQuery [39], using a combination of JS Delta [40]

and the TAJS inspector [15], [41]. We similarly used delta

debugging to help reduce inputs, but our approach focuses

on addressing the lack of oracles when testing static analysis

and can be used to detect and help debug both precision and

soundness issues. Wei et al. presented an approach to diagnose

sources of imprecision in JavaScript analyses by monitoring

an analysis’ execution [42]. Our approach does not monitor

the analysis process, but rather, generates test cases to find

bugs by comparing the results of multiple configurations. As a

result, our approach is less intrusive and more general.

Our approach is also related to compiler testing, as static

analyses are often implemented within compilers. Metamorphic

testing is a common approach for testing compilers [43].

These approaches generally construct two programs that are

equivalent, and then compile them with the same compiler to

ensure the two executables behave the same. For example, Le

et al. propose an approach for generating equivalent programs

by inserting and deleting code in dead regions [44], [45]. Sun

et al. propose a more general approach to generating equivalent

variants of a program within their tool, Hermes, which allows

mutation of both dead and live regions of code [46]. While all

of these works consider some equivalence relation, our work

uses a subset-based metamorphic relation in order to find bugs.

Furthermore, our work is the first to apply such a relation to

static analysis in order to find bugs.

Configuration Testing: Combinatorial interaction testing

(CIT) is a common technique for testing configurable soft-

ware [47], [48], [49], [5], [50]. The goal of CIT is to generate

various configurations and execute those configurations in order

to maximize coverage of the software’s features. While these

approaches test configurations to find bugs, they require an

oracle to determine whether a test passed or failed. Our work

treats the partial order specification as the test oracle.

Several configuration fuzzing techniques have been devel-

oped. such as ConfigFuzz, which expands the program input

with configurations and fuzzes configurations using coverage

feedback [51]. Lee et al. presented a 2-stage fuzzer, POWER,

to explore configurations [52]. Fuzzing configurations is a

research direction we are interested in pursuing in the future.

VIII. CONCLUSIONS

In this work, we presented ECSTATIC, an easy-to-use,

extensible, and scalable open-source framework for automated

testing and debugging of configurable static analysis tools.

ECSTATIC exposes a simple frontend, allowing addition of

new tools and benchmarks using feasible-to-obtain inputs:

configuration grammar, partial order specification, and scripts

that typically are only dozens of lines of code. Given these

inputs, ECSTATIC leverages partial order relationships between

configuration options to iteratively test for bugs in configurable

static analysis, even without a ground-truth benchmark. EC-
STATIC then performs violation-aware delta debugging, in order

to produce reduced programs that exhibit bugs on analysis

tools, which are useful artifacts for debugging. We integrated

four popular static analysis tools–SOOT, DOOP, WALA, and

FlowDroid–as well as four benchmarks into ECSTATIC.

Using ECSTATIC, we found 74 partial order bugs across all

four tools, out of 158 defined partial orders, using both real-

world and microbenchmarks. We reported a subset of these bugs

to tool developers, leading to three bug fixes in FlowDroid and

ongoing discussions about potential bugs in WALA, FlowDroid,

and DOOP. ECSTATIC’s violation-aware delta debugging was

able to reduce real-world programs to an average of 50% of

their original size, with a maximum observed reduction of 99%.

In addition to showing the efficacy of ECSTATIC’s automated

testing approach, our results demonstrate the necessity of large,

diverse benchmarks for testing static analysis tools.

In the future, we plan to integrate more tools into ECSTATIC,

covering more target languages and types of analysis. We plan

to extend the core technique with more fuzzing strategies

in order to allow more sophisticated exploration of tools’

configuration spaces. We plan to research the potential of

comparing intermediate analysis states in addition to final

analysis results to allow detecting more bugs (Section III-D).

Additionally, we plan to add support for constraints in the

configuration space to handle conflicts between configuration

options. We also plan to extend support for the task of

debugging configurable static analysis past delta debugging

(e.g., by integrating fault localization techniques to help users

find bugs faster).

ACKNOWLEDGMENT

This work was partly supported by NSF grants CCF-2047682

and CCF-2008905, the NSF graduate research fellowship pro-

gram, and Eugene McDermott Graduate Fellowship 202006.

560

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[2] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot: A java bytecode optimization framework,”
in CASCON First Decade High Impact Papers, ser. CASCON
’10. USA: IBM Corp., 2010, p. 214–224. [Online]. Available:
https://doi.org/10.1145/1925805.1925818

[3] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification
of sophisticated points-to analyses,” SIGPLAN Not., vol. 44, no. 10, p.
243–262, oct 2009. [Online]. Available: https://doi.org/10.1145/1639949.
1640108

[4] “Wala,” https://github.com/wala/WALA, 2022.
[5] A. Mordahl and S. Wei, “The impact of tool configuration spaces on the

evaluation of configurable taint analysis for android,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 466–477. [Online]. Available:
https://doi.org/10.1145/3460319.3464823

[6] “DroidBench 3.0,” https://github.com/FoelliX/ReproDroid, 2021.
[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The DaCapo
benchmarks: Java benchmarking development and analysis,” in OOPSLA

’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programing, Systems, Languages, and Applications. New York,
NY, USA: ACM Press, Oct. 2006, pp. 169–190.

[8] C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency graphs,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2019, pp. 556–566.

[9] G. Misherghi and Z. Su, “Hdd: Hierarchical delta debugging,”
in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 142–151. [Online]. Available:
https://doi.org/10.1145/1134285.1134307

[10] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[11] “The call-graph assessment & test suite,”
https://bitbucket.org/delors/cats/src/master/, 2022.

[12] “FossDroid,” https://fossdroid.com, 2022.
[13] “Flowdroid,” https://github.com/secure-software-engineering/FlowDroid/

issues/496, 2022, issue #496.
[14] L. N. Q. Do, S. Krüger, P. Hill, K. Ali, and E. Bodden, “Debugging

static analysis,” IEEE Transactions on Software Engineering, vol. 46,
no. 7, pp. 697–709, 2020.

[15] “Tajs,” https://github.com/cs-au-dk/TAJS, 2022.
[16] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new

approach for generating next test cases,” arXiv preprint arXiv:2002.12543,
2020.

[17] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,
and Z. Q. Zhou, “Metamorphic testing: A review of challenges and
opportunities,” ACM Comput. Surv., vol. 51, no. 1, jan 2018. [Online].
Available: https://doi.org/10.1145/3143561

[18] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[19] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2018, pp. 184–191.

[20] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 49–61. [Online]. Available:
https://doi.org/10.1145/199448.199462

[21] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: An open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1393–1403. [Online]. Available:
https://doi.org/10.1145/3468264.3473932

[22] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “Fuzzing
with grammars,” in The Fuzzing Book. CISPA Helmholtz Center
for Information Security, 2022, retrieved 2022-01-12 14:39:50+01:00.
[Online]. Available: https://www.fuzzingbook.org/html/Grammars.html

[23] “Javaparser,” https://javaparser.org, 2022.
[24] “jdeps,” https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jdeps.html,

2022.
[25] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++

virtual function calls,” in Proceedings of the 11th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’96. New York, NY, USA: Association
for Computing Machinery, 1996, p. 324–341. [Online]. Available:
https://doi.org/10.1145/236337.236371

[26] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai,
P. Lam, E. Gagnon, and C. Godin, “Practical virtual method call
resolution for java,” in Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’00. New York, NY, USA: Association
for Computing Machinery, 2000, p. 264–280. [Online]. Available:
https://doi.org/10.1145/353171.353189

[27] M. Sharir, A. Pnueli et al., Two approaches to interprocedural data
flow analysis. New York University. Courant Institute of Mathematical
Sciences . . . , 1978.

[28] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 1, p. 1–41, jan 2005. [Online]. Available:
https://doi.org/10.1145/1044834.1044835

[29] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts well:
Understanding object-sensitivity,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 17–30. [Online]. Available:
https://doi.org/10.1145/1926385.1926390

[30] O. Lhoták and L. Hendren, “Scaling java points-to analysis using spark,”
in International Conference on Compiler Construction. Springer, 2003,
pp. 153–169.

[31] M. Reif, F. Kübler, M. Eichberg, D. Helm, and M. Mezini,
Judge: Identifying, Understanding, and Evaluating Sources of
Unsoundness in Call Graphs. New York, NY, USA: Association
for Computing Machinery, 2019, p. 251–261. [Online]. Available:
https://doi.org/10.1145/3293882.3330555

[32] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis tools
keep their promises?” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
331–341. [Online]. Available: https://doi.org/10.1145/3236024.3236029

[33] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe,”
in NDSS, vol. 15, no. 201, 2015, p. 110.

[34] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the analyzers:
Flowdroid/iccta, amandroid, and droidsafe,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 176–186. [Online]. Available:
https://doi.org/10.1145/3213846.3213873

[35] O. Lhoták and L. Hendren, “Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation,” ACM Trans.
Softw. Eng. Methodol., vol. 18, no. 1, oct 2008. [Online]. Available:
https://doi-org.libproxy.utdallas.edu/10.1145/1391984.1391987

[36] S. Wei, P. Mardziel, A. Ruef, J. S. Foster, and M. Hicks,
“Evaluating design tradeoffs in numeric static analysis for java,”
in Programming Languages and Systems. Springer International
Publishing, 2018, pp. 653–682. [Online]. Available: https://doi.org/10.
1007%2F978-3-319-89884-1_23

[37] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proceedings of the 9th

561

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

European Conference on Object-Oriented Programming, ser. ECOOP
’95. Berlin, Heidelberg: Springer-Verlag, 1995, p. 77–101.

[38] “Flowdroid,” https://github.com/secure-software-engineering/FlowDroid/
issues/503, 2022, issue #503.

[39] E. Andreasen and A. Møller, “Determinacy in static analysis for jQuery,”
in Proc. ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 2014.

[40] “Js delta,” https://github.com/wala/jsdelta, 2022.
[41] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript,”

in Static Analysis, J. Palsberg and Z. Su, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 238–255.

[42] S. Wei, O. Tripp, B. G. Ryder, and J. Dolby, “Revamping javascript static
analysis via localization and remediation of root causes of imprecision,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
487–498. [Online]. Available: https://doi.org/10.1145/2950290.2950338

[43] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, feb
2020. [Online]. Available: https://doi.org/10.1145/3363562

[44] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” SIGPLAN Not., vol. 49, no. 6, p. 216–226, jun 2014.
[Online]. Available: https://doi.org/10.1145/2666356.2594334

[45] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: Association for Computing Machinery, 2015, p. 386–399.
[Online]. Available: https://doi.org/10.1145/2814270.2814319

[46] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” SIGPLAN Not., vol. 51, no. 10, p. 849–863, oct 2016.
[Online]. Available: https://doi.org/10.1145/3022671.2984038

[47] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware
regression testing: An empirical study of sampling and prioritization,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 75–86. [Online]. Available:
https://doi.org/10.1145/1390630.1390641

[48] M. Cohen, P. Gibbons, W. Mugridge, and C. Colbourn, “Constructing
test suites for interaction testing,” in 25th International Conference on
Software Engineering, 2003. Proceedings., 2003, pp. 38–48.

[49] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, feb 2011. [Online]. Available:
https://doi.org/10.1145/1883612.1883618

[50] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across
configurations: Implications for combinatorial testing,” SIGSOFT Softw.
Eng. Notes, vol. 31, no. 6, p. 1–9, nov 2006. [Online]. Available:
https://doi.org/10.1145/1218776.1218785

[51] Z. Zhang, G. Klees, E. Wang, M. Hicks, and S. Wei, “Registered report:
Fuzzing configurations of program options.” San Diego, CA, USA:
International Fuzzing Workshop (FUZZING) 2022, April 2022. [Online].
Available: https://dx.doi.org/10.14722/fuzzing.2022.23008

[52] A. Lee, I. Ariq, Y. Kim, and M. Kim, “Power: Program option-aware
fuzzerfor high bug detection ability.” 15th IEEE International Conference
on Software Testing, Verification and Validation (ICST) 2022, April 2022.

[53] O. Tange, “Gnu parallel 20211222 (’støjberg’),” Dec. 2021, GNU
Parallel is a general parallelizer to run multiple serial command
line programs in parallel without changing them. [Online]. Available:
https://doi.org/10.5281/zenodo.5797028

562

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:18:47 UTC from IEEE Xplore. Restrictions apply.

