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Abstract—Variability in C software is a useful tool, but critical
bugs that only exist in certain configurations are easily missed by
conventional debugging techniques. Even with a small number
of features, the configuration space of configurable software is
too large to analyze exhaustively. Variability-aware static analysis
for bug detection is being developed, but remains at too early
a stage to be fully usable in real-world C programs. In this
work, we present a methodology of finding variability bugs
by combining variability-oblivious bug detectors, static analysis
of build processes, and dynamic feature interaction inference.
We further present an empirical study in which we test our
methodology on two highly configurable C programs. We found
our methodology to be effective, finding 88 true bugs between
the two programs, of which 64 were variability bugs.

Index Terms—static analysis, configurable C software, vari-
ability bugs

I. RESEARCH PROBLEM AND MOTIVATION

Compile-time variability allows large C programs to be
tailored to a wide variety of use cases. This variability is
achieved through the use of features, which are used to
determine which parts of the codebase will be included in the
final product [1]. While this variability proves useful in this
regard, it can mask bugs in the codebase that only manifest in
configurations with certain feature combinations [2] [3].

These bugs, called variability bugs, have been shown to
exist in significant numbers in commonly used C programs.
Abal et al. [4], for instance, demonstrated the existence of
variability bugs in the Linux kernel and other C programs
through manual inspection of bug-fixing patches. Rhein et
al. [5] attempted to find bugs preemptively, developing seven
variability-aware static analyses. These analyses produced
impressive results on real-world C programs; however, they
are still limited, not supporting all GNU C extensions and
necessitating the exclusion of some files in order to work.
In short, the work of finding variability bugs is still nascent,
requiring either extensive manual inspection or the use of new,
specialized tools.

To this end, we aim to develop a strategy that uses existing
static analysis tools to find previously unknown variability
bugs in highly configurable C programs. This strategy would
allow developers to take advantage of the static analysis tools

they are already familiar with to find variability bugs as part
of the quality assurance process. Furthermore, studying new
variability bugs would inform the design of variability-aware
tools in the future. Two primary challenges arise as part of
this goal. The first is how we can find variability bugs with
variability-oblivious static analyzers. Then, given a variability
bug, the second challenge is determining what feature or
feature interaction cause that bug to manifest.

We address these challenges with the following contribu-
tions:

1) We develop a methodology that combines existing static
bug detectors, static analysis of build systems, dynamic
interaction inference, and configuration sampling to
semiautomatically detect new variability bugs in real-
world C software.

2) We conduct an empirical study involving two highly
configurable C programs that shines light on the nature
of variability bugs in the wild.

II. DETECTING & CHARACTERIZING VARIABILITY BUGS

In this section, we describe our methodology in detail.
Sample Generation The number of configurations for

programs even with a relatively small feature space is far too
big to exhaustively analyze. As we aim to use variability-
oblivious static analysis, we sample configurations from the
configuration space with the feature information exposed in
systems that use KCONFIG. Using the KMAX [6] tool to ob-
tain configuration information, and the methodology described
by Oh et al. [1], we generate a configuration sample that 1)
provides high feature coverage and 2) only generates valid
configurations (i.e.,configurations that can be compiled suc-
cessfully). We generate a sample of 1,000 valid configurations
for each target program.

Postprocessing and Classifying Warnings We next run our
detector suite on each configuration in the sample and obtain
warnings (i.e., bug reports emitted by a bug detector). With
1000 configurations, the collection of warnings generated by
just a single bug detector on a single target program quickly
becomes too large to evaluate manually; however, since most
of the codebase is the same between different configurations



Fig. 1. Number of bugs plotted against degree of feature interaction. The
latter refers to the number of features are associated with the bug. Generic
refers to non-variability bugs.

of the same program, there will be many duplicated warnings
in the collection. By generating a hash value for each bug
report, and comparing those hashes to weed out duplicates,
we reduce the number of warnings to a manageable level. We
next manually classify the unique warnings as true or false,
referring to the reported location and description. We repeat
this process for each bug detector.

Determining Feature Interactions We use a semiautomatic
approach to determine feature interactions for true positive
bugs, combining dynamic feature inference using IGEN [7]
and manual code inspection. IGEN uses the list of configura-
tions in which a bug occurred to infer the feature constraints
that give those configurations. The combined approach allows
us to effectively determine the feature interactions responsible
for all found bugs with high precision.

Tools and Target Programs When choosing target pro-
grams for the empirical study, our goal was to find software
that is 1) highly configurable, 2) under active maintenance,
and 3) exposes feature constraints through KCONFIG. We
thus chose two programs: axTLS 2.1.4 [8], which provides 84
features and 2.0 × 1012 possible configurations; and Toybox
0.7.5 [9], which provides 316 features and 1.4×1081 possible
configurations. Similarly, when choosing static analysis tools
to use, we wanted tools that 1) work on C code, 2) emit bug
warnings instead of other code quality metrics, and 3) are free
to use. The third criterion we enforced to ease reproducibility.
The three static analysis tools we settled on are cppcheck 1.72
[10], Facebook Infer 0.15.0 [11], and clang 4.0’s built-in static
analyzer [12].

III. RESULTS AND FUTURE WORK

A. Results

In total we have found 88 bugs. 42 are from Toybox, and 46
are from axTLS. Of these bugs, 64 are variability bugs, 16 of
which are caused by the conjunction of two or more features.
Over half of the variability bugs are caused by enabling or
disabling a single feature, with bug count decreasing as the
number of features increases (see Figure 1).

Out of all found variability bugs, seven of them are associ-
ated with one or more disabled features: three are associated
with only disabled features, and the other four are associated

Fig. 2. Number of times a feature is involved in a bug-causing interaction
plotted against feature. Feature names are excluded for readability, but each
vertical bar represents one feature.

with some combination of enabled and disabled features. All
seven of these bugs are in axTLS (all Toybox bugs were
only associated with enabled features). This means while
one could find all of the bugs we found on Toybox by
running our detector suite on Toybox’s allyesconfig, neither the
allyesconfig nor the allnoconfig provided with these programs
are sufficient to find bugs in axTLS. Whether the configuration
information of a program could be used to choose whether to
analyze the allyesconfig or sample the configuration space is
an interesting question for future studies.

We also observe from Figure 2 that axTLS’ features tend
to be involved in more complex bug-causing interactions than
those in Toybox. This is likely because of how features are
used in these programs: Toybox’s features are more indepen-
dent of each other than those in axTLS. These data suggest
that the implementation of variability can affect the nature of
variability bugs in a program; how exactly this happens is an
interesting research question, which we plan to address by
running our experiments on more programs.

B. Evaluation and Future Work

Overall, our results suggest that variability-oblivious static
analysis can be used to find variability bugs in C software. We
are continuing to expand the scope of the empirical study by
adding more target programs and bug detectors. Namely, we
have added BusyBox 1.28.0 [13] and the Linux kernel 4.17.6
[14] as additional target programs, and CBMC 5.3 [15] and
IKOS 1.3.r1.dd5a747 [16] as additional bug checkers. This
should give us a fuller look at the nature of variability bugs
across a variety of programs, and enable us to make further
inferences about how the implementation of variability affects
the nature of variability bugs. We also plan to make our bug
database available in the near future, to provide a benchmark
for future works to compare against. We will add to this
database as we obtain results from more programs and tools.
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