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Abstract— Modern System-on-Chip (SoC) designs are inte-
grated with intellectual property (IPs) cores to achieve complex
functionalities. While this integration significantly improves the
computing power of SoCs, it also leads to an increase in verifica-
tion complexity pertaining to the security of the SoC design.
Existing SoC verification techniques do not offer localization
capability to pinpoint the root causes of security vulnerabilities
in the register transfer level (RTL) code. This leads to signif-
icant delay, incurred due to SoC debugging. Fault localization
techniques, such as spectrum-based methodologies, are used
predominantly in software validation and testing to debug and
localize bugs in programs. However, due to the absence of any
such techniques that correlate faulty output with individual lines
of RTL code, approaches that can detect vulnerabilities in the
hardware have not yet been adopted. In order to circumvent
this, in this paper, we, for the first time, propose RTL-Spec, a
RTL level security vulnerability localization framework that aims
to pinpoint buggy lines in the RTL code to ensure the security
of the SoC design in its pre-silicon phase. RTL-Spec achieves
this by establishing a correlation between the effects of input
patterns in simulation runs and the corresponding statements
in the RTL code. The subsequent stage employs a spectrum-
based localization technique to identify buggy statements in RTL
that might cause vulnerabilities. The efficacy of RTL-Spec was
assessed using a buggy version of PULPissimo SoC, utilized in the
“Hack@DAC2018” competition. RTL-Spec accurately identified
the origin of all 14 vulnerabilities in the RTL code and achieved
a precision of 100% in 10 out of the 14 cases.

Index Terms—Security Verification, Bug Localization, Hard-
ware Debugging, Hardware Security.

I. INTRODUCTION

System-on-chips (SoCs) are the brains behind modern com-
puting devices. However, with increase in design complexity,
reduction in feature size and time-to-market, a lot of func-
tional bugs are manifested in modern SoCs, which require a
thorough verification procedure to address [1]. SoC functional
verification already poses a significant challenge in modern
chip design. Over 70% of resources and engineering time
are dedicated to verification tasks [2]–[4]. In modern SoCs,
used for mission-critical environments, security verification
manifests as a critical offshoot. This is because an adversary
can potentially exploit the corner cases uncovered by tradi-
tional simulation-based functional verification, and introduce
vulnerabilities, which may jeopardize the overall system. SoC
security verification is imperative to address these critical
vulnerabilities before a chip is shipped to a customer. In
order to ensure security robustness, semiconductor companies
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practice a very rigorous security development lifecycle (SDL)
process concurrently with the conventional hardware develop-
ment cycle [5], [6].

Till date, existing research has developed various SoC
security verification methodologies. These methods include
fuzzing, concolic testing, assertion checking, and information
flow tracking [7]–[11]. However, none of these approaches
are able to localize or diagnose the exact location of the
RTL code, which may lead to the security vulnerability.
The debugging process is typically manual, which may incur
significant latency, thus, extending the time-to-market for the
SoC. For example, the password checking statements in lines 6
and 7 of the code example presented in Listing 1 exhibit
a security vulnerability. This vulnerability prevents the pass-
word checking function from granting access even when the
correct password is entered. Existing RTL security verification
methodologies, mentioned before, can detect this vulnerability.
However, none of them can identify which lines in the RTL
code result in this vulnerability. Therefore, this would require
a manual inspection of the RTL-code of around 400 lines
in order to identify the security vulnerability. Although post-
silicon debug techniques [12]–[15] can be used to identify the
buggy RTL locations, they: (1) incur higher overhead due to
addition of design-for-debug components, (2) lead to respin,
which extends the time-to-market.

1 `STATE_run_test_idle: begin
2 if(tms_pad_i && (passchk))
3 next_TAP_state=`STATE_select_dr_scan;
4 else begin
5 next_TAP_state = `STATE_run_test_idle;
6 if(correct >= 32'h0001_FFFF)
7 passchk = 1;
8 else if(tdi_o == pass[bitindex]) begin
9 correct++;

10 bitindex++; end end end

Listing 1: Password checking bug.

Software validation techniques such as slicing, spectrum,
program state analysis, data-mining etc. offer localization of
bugs in program code [16]–[18]. For example, one of the
most prominent approaches, spectrum, accomplishes this by
tracking executed and non-executed lines of code in each
program run for a given input and subjecting this data to
statistical analysis. However, such software bug localization
approaches cannot be directly extended to encompass RTL
security bugs. This is because, unlike sequential software code
execution, RTL codes can also be executed in a concurrent
fashion, making it more complex to trace. To the best of our
knowledge, there is no available technique to directly associate



the outcomes of each simulation run with individual statements
of the RTL code, making it extremely difficult to localize the
security vulnerabilities, once a violation is detected.

To this end, in this paper, we, for the first time, introduce
RTL-Spec, a novel framework designed for precise identifi-
cation of security vulnerabilities in an SoC design, directly
in its pre-silicon phase. Our proposed approach consists of
two main steps: slicing and spectrum analysis. Slicing is
used to reduce the search space of the hardware design by
activating relevant paths or states. Spectrum analysis is used
to rank the suspiciousness of statements based on the trust
scores of input nets, which are derived from test cases. The
approach also uses a “z-score” method to distinguish between
incorrect and missing logic. The approach introduces novel
features that distinguish it from software bug localization
techniques, such as handling of concurrent execution of RTL-
code, computing and normalizing suspiciousness scores, and
detecting both incorrect and missing logic. When evaluated
using a buggy RISC V-based PULPissimo SoC provided at
the “Hack@DAC2018” competition [19], RTL-Spec was able
to successfully detect the RTL statements responsible for
14 security vulnerabilities. Our primary contributions can be
summarized as follows:

• We present RTL-Spec, a novel bug localization frame-
work, that can identify buggy lines of RTL code that
cause security vulnerabilities in an SoC. To the best of our
knowledge, this is the first ever framework to diagnose
the manifestation of security bugs in pre-silicon phase.

• We introduce slicing in the control flow of the RTL to
simulate a portion of the entire SoC. This aids in reducing
the overall time required to verify each security property
of the entire SoC design.

• We develop a novel RTL-level spectrum analysis, which
aids in assigning a score to individual RTL code state-
ments, that indicates the probability of each statement
harboring a potential security bug.

• RTL-Spec, when evaluated on the PULPissimo SoC used
in the “Hack@DAC2018” competition, revealed that it
was able to successfully locate all 14 inserted security
vulnerabilities in the designs correctly [19]. We also
evaluate the precision with two standard localization
metric “Top-k rank” and “precision” to demonstrate RTL-
Spec’s localization capability.

II. BACKGROUND AND RELATED WORK

This section presents the essential concepts for our proposed
methodology. Furthermore, we review the related work in
RTL verification and debugging to elucidiate the rationale and
inspiration behind our approach.

A. SoC Security Verification
Security verification in SoC designs has emerged as a criti-

cal concern within the semiconductor manufacturing industry.
Substantial efforts have been dedicated to tackling this issue
through extensive research and development endeavors. Con-
colic testing, a semi-formal verification approach, has recently
been developed for hardware security verification, by reducing
the symbolic execution search space and preventing state
space explosion [8], [20]–[22]. Following symbolic execution,

this method runs simulation with concrete inputs to further
explore the corner cases. This technique was found to surpass
existing state-of-the-art commercial EDA tools like Cadence
JasperGold [20]. Another viable approach is assertion-based
verification, where logical propositions are employed to define
the security properties of the SoC within the code. These
propositions are required to remain TRUE during specific
execution phases for the property to be verified [10], [23].
Recent studies have introduced fuzzing-based verification
methods, which hold the potential to cover complex corner
cases in hardware designs [7], [24], [25]. Nonetheless, these
methodologies do not offer localization of the bugs in RTL
code. In order to diagnose manifested security vulnerabilities,
manual inspection is required to locate the buggy statements
in the code. This manual process can introduce delays in
meeting time-to-market goals and may introduce human errors.
Therefore, it is imperative to develop a methodology capable
of automating bug localization, to improve the efficiency of
secure SoC development.

B. Fault localization in Software
Fault localization, in the software domain, refers to the

process of identifying a set of statements in a code that may
cause the program to fail. Fault localization techniques have
evolved with the increasing size and complexity of software
programs. This led to the development of several powerful
and effective localization approaches that automate the fault
localization process. Among these techniques, two of the most
popular software fault localization approaches are slicing- and
spectrum-based methods.

1) Slicing-based fault localization: In this localization tech-
nique, a slice of a program is taken with regards to a variable
on a given statement. A forward slice from that variable
includes all of the statements that the variable may/must affect.
A backward slice from that variable includes all of the state-
ments that may/must affect the variable. Whether or not we use
a may- or a must-relation is dependent upon whether we take
a static or dynamic slice, respectively. Slicing is particularly
useful to limit the code that a developer needs to inspect [17],
[26]–[28]. This approach also contributes to expediting the
validation process by selectively verifying a segment of the
program, rather than its entirety. Slicing techniques have been
incorporated into hardware design verification methodologies
primarily with the aim of test case generation and memory
conservation [9], [29]. This is achieved by selecting paths
pertaining to properties for verification within the control flow
of the hardware design and constraining the exploration of
states within these sliced paths.

2) Spectrum-based fault localization: Spectrum-based ap-
proaches are powerful techniques that have seen extensive
use in software testing and debugging [16]. These techniques
collect information about the execution of the program (e.g.,
the statement execution trace), called program spectra. By
comparing spectra from passing and failing test cases, the
localizer can judge the suspiciousness of each statement of
the program (i.e., the likelihood that it contains a fault). The
executable statement hit spectrum (ESHS) which is used by
popular fault localization techniques like Tarantula [18] or
Ochiai [30], records the executed statements for analysis [16].



For example, consider a statement s in a program, where
p(s) gives the number of passing test cases the statement
was executed in, f(s) denotes the number of failing test
cases that the statement was executed in, and total passed
and total failed denote the total number of passed and
failed test cases, respectively. Tarantula [18], considers the
suspiciousness, Sus(s), of a statement s to be:

Sus(s) =

f(s)
total failed

f(s)
total failed + p(s)

total passed

(1)

Spectrum-based approaches can assist developers in iden-
tifying specific program areas while troubleshooting faults.
These methods analyze lines of code and furnish them a
‘suspiciousness score’, indicating how likely they are to cause
a program to crash.

In this paper, we adapt and utilize these principles of
slicing and spectrum-based localization techniques in software
to develop our novel RTL-Spec framework, that aims to
pinpoint buggy lines of code in an RTL design. By assigning
suspiciousness scores to statements within an RTL design,
RTL-Spec enables the localization of security vulnerabilities
during the pre-silicon phase of SoC design.

III. PROPOSED RTL-SPEC METHODOLOGY

This section introduces RTL-Spec, a novel framework that
uses slicing and spectrum analysis to evaluate the security of
an RTL design and detect any bugs in the RTL code due to
property violations. We first explain the terms required for our
approach. Next, we give a summary of RTL-Spec, followed
by detailed description of its modules.

A. Definitions

a) Nets: A net is any variable in a design that can be
assigned a value. Examples include wires, registers, logics,
and bit type variables in the RTL code.

b) Guard Nets and Conditions: In order to execute a
statement in RTL, a condition or a set of conditions may
need to be satisfied. Those conditions will be regarded as
guard conditions and the nets controlling these conditions
are regarded as guard nets. For example, let us assume a
conditional statement C := n binopV ? S1 : S2, where binop
is some binary relation like = or >. Assume n is a net and
V is either a net or a constant value. n is considered a guard
net, as is V if it is a net.

c) Coverage: In a module, each net has an associated
area of influence, which we refer to as its coverage. For
assignment statements like S1 := n ← V or S2 := A ← n,
we consider the statement “covered” by net n. In the case of
a conditional statement C := n binopV ? S1 : S2 both S1 and
S2 covered by the guard net n, and by V if V is a net.

d) Dependency Graph of a Net: If there exists a state-
ment, such that S := n ← f (v0, v1, ..., vm), where each
argument vi|1 ≤ i ≤ m is either a net or a constant, net
n will be defined as dependent upon every vi that is a net.
Moreover, n is dependent on both guard and assignment nets.

e) Trust Score and Suspiciousness Score: In this study,
two metrics are used to localize bugs in the RTL code. The
“trust score” is a metric that represents the probability of a
net or code statement being free from or unrelated to the
violation. The “suspiciousness score” is a metric indicating the
likelihood of a net or statement causing a security violation.
These scores are calculated by running a statistical analysis
on the “passed” and “failed” test cases acquired from the
simulation results. Trust score of each input pin in an RTL
design is calculated using Equation 2.

Trust Score = 1−
f(s)

totalfailed

f(s)
totalfailed + p(s)

totalfailed

(2)

These calculations are elaborated in detail in Section III-B3b.
f) Input Coverage: In spectrum-based fault localization,

the suspiciousness score of a statement is determined through a
combination of coverage information and test results. Unlike
software, hardware statements are not executed line-by-line,
thus analogous statement coverage is not directly applicable.
Instead, statements can be “executed” (i.e., activated) depend-
ing on inputs. Therefore, we determine the coverage of a
statement based on input patterns. Assuming Ii is a subset
to the set of all input nets I for the design, the statements Si
that are governed by Ii will be regarded as covered by Ii. We
discuss this in detail in Section III-B1a.

B. RTL-Spec Framework
Figure 1 provides an overview of the RTL-Spec’s workflow,

which is divided into five key sections. The first section en-
compasses RTL design and security properties (cross-hatched
background). Next, the slicing design for simulation is detailed
in Section III-B1 (hatched background). Section III-B2 covers
simulation and test case generation. In Section III-B3, we ex-
plore spectrum analysis, which identifies suspicious lines in the
code (dashed hatched background). Finally, the output of RTL-
Spec is represented by the dotted background, producing a
scored CFG. Each CFG statement is assigned a suspiciousness
score, indicating the likelihood of containing a bug.

Furthermore, RTL-Spec is developed in such a way that ver-
ification tools like Cadence JasperGold, Synopsys verification
tools, Coppelia, or RTL-Contest can be employed to generate
test cases for running spectrum analysis [3], [20], [31], [32].
From Figure 1, the “Simulation Path Selection & Testbench
Generation” and “Simulation & Testcase Generation” blocks
can be replaced by aforementioned verification tools. If a
violation is detected, RTL-Spec runs spectrum analysis using
the test cases generated from the verification process. Both
simulation or emulation can be used to generate test cases
and run spectrum analysis to identify buggy statements in the
RTL code. This study utilizes slicing to extract pathways from
the CFG of the RTL design, minimizing unnecessary path
exploration during simulation. RTL-Spec assumes that security
properties are available, and the bugs have an impact on the
property. This helps classify the simulation results as passed
or failed test cases.

1) Slicing Design to Optimize Simulation: In order to
generate test cases and construct restrictions for optimizing
simulation, RTL-Spec requires a CFG. We generate CFG



Fig. 1: Flowchart of RTL-Spec.

using our in-house CFG generator which shares similarities
with Goldmine [33] but is customized specifically to simplify
the process of slicing. The CFG is required for two distinct
objectives. First, we create a dependency graph of nets that
determines the effect of an input pin on the nets in the
design using CFG. Second, from the CFG, RTL-Spec performs
slicing in order to extract relevant simulation paths that can
lead to the violation of the security property to verify. These
paths are employed to formulate simulation constraints, which
streamline the test case generation process. The generated test
cases simulate design behavior along the selected paths. By
analyzing the output, the dependency graph aids in identifying
input pins with a higher likelihood of triggering security
violations. This process is represented with blocks in dashed
background, named “Slicing Optimization”, which facilitates
directed test generation to detect vulnerabilities. Setting up
simulation path requires branch realignment or analysis on
distributed and concurrent systems as shown in [8], [34]. Em-
ploying slicing techniques can circumvent these computations,
enabling directed input pattern generation that effectively stim-
ulate the necessary paths. We describe the modules involved
in this process in the following paragraphs.

1 `timescale 1ns/1ps
2 module lck_reg(
3 input [15:0] D_in,
4 input clk, nrst, wr_q, wr_ack, lck, debug,

wr_val,
5 output wr_req,
6 output reg wr_done,
7 output reg [15:0] D_out);
8 wire unlocked, wr_en;
9 assign unlocked = !lck | debug;

10 assign wr_en = wr_val & wr_ack;
11 always @(posedge clk or negedge nrst) begin
12 if (wr_q == 1) wr_req <= 1;
13 else wr_req <= 0;
14 if (!nrst) D_out <= 16'h0000;
15 else if (wr_en & unlocked) begin
16 D_out <= D_in;
17 wr_done <= 1;
18 end
19 else if (!wr_en) D_out <= D_out;
20 end
21 endmodule

Listing 2: RTL Example (in SystemVerilog).
a) Dependency Graph Generation: To localize the bugs

in the RTL code of a design, we need to evaluate the relation of
each statement to the inputs. In order to evaluate this relation,
a dependency graph is generated. From the dependency graph,

the impact of each input pin on the nets can be inferred. The
graph is also used to generate constraints for testbenches (Sec-
tion III-B2). This module of RTL-Spec is shown in Figure 1
with the block named “Dependency Graph Generation”. The
dependency graph is constructed using the CFG of the design.
Before discussing the dependency graph generation process, an
example of an RTL code for a “locked register” is illustrated in
Listing 2, with its corresponding CFG illustrated in Listing 3.

In Listing 3, each line of the CFG is divided into four
parts, separated by a double colon (::). The first part indicates
the module name of the design. The second part shows the
branch information of each statement. If the branches of CFG
are independent of each other, the branch information will be
enumerated, such as lines 1 to 3 in Listing 3. When the branch
is dependent on the guard condition, a comma (,) is used to
illustrate a new layer of branches. For example, lines 4 to 14
are dependent on the guard condition at line 3. The second
number of the branch information increments when a guard
condition of the same layer is introduced as seen in lines 9
and 10. Assignment-type statements under a guard condition
do not contribute to the branch information. Since this CFG
is primarily used to generate testbenches and does not affect
the simulation, we consider the conversion of “posedge clk”
to “clk == 1” and “negedge nrst” to “nrst == 0” as valid.
1 lck_reg :: 0 :: unlocked <== !lck | debug :: A;
2 lck_reg :: 1 :: wr_en <== wr_val & wr_ack :: A;
3 lck_reg :: 2 :: clk == 1 or nrst == 0:: Alws;
4 lck_reg :: 2, 0 :: wr_q == 1 :: C;
5 lck_reg :: 2, 0 :: wr_req <== 1 :: A;
6 lck_reg :: 2, 1 :: ++++ELSE++++ :: C;
7 lck_reg :: 2, 1 :: wr_req <== 0 :: A;
8 lck_reg :: 2, 2 :: !nrst == 1 :: C;
9 lck_reg :: 2, 2 :: D_out <== 16'h0000 :: A;

10 lck_reg :: 2, 3 :: wr_en & unlocked == 1 :: C;
11 lck_reg :: 2, 3 :: D_out <== D_in :: A;
12 lck_reg :: 2, 3 :: wr_done <== 1 :: A;
13 lck_reg :: 2, 4 :: !wr_en == 1 :: C;
14 lck_reg :: 2, 4 :: D_out <== D_out :: A;

Listing 3: Example CFG.
Once the CFG is developed, we can proceed to generate the

dependency graph. To generate the dependency graph first we
take the security property shown in Listing 4. This property
defines the secure write operation of the RTL code shown in
Listing 2. The property requires that when the “lck” flag is set
to HIGH, the “D out” flag should remain stable. The proposed
bug localization assumes the presence of properties that might
not directly correlate with the specific network elements of the
bug. However, these properties must be influenced by the bug
for the classification of test cases as passed or failed.
1 property lock_status_chck;
2 @(posedge clk) disable iff(!nrst)
3 lck |-> $stable(D_out);
4 endproperty

Listing 4: Security property for verification.
Algorithm 1 is employed to construct the dependency graph

using the CFG and the property. This approach facilitates
the construction of dependency graphs without synthesis, as
opposed to relying on fan-in and fan-out. Algorithm 1 takes
the RTL code M and a property P as input. From M, the
CFG is generated (line 1). The RTL code is parsed to retrieve
the set of input nets IM (line 2). Each relevant net n that
defines the properties is collected to form the set of property
nets Np (line 3). In Listing 4, the relevant nets in properties are



Algorithm 1 Dependency Graph Generation.
Input: M, P;
Output: Gdepndncy , IC ;

1: CFGM ← Gen CFG(M)
2: IM ← Construct(M)

3: Np
append←−−−− all n from P

4: Ncurr ← Np

5: while Ncurr ̸⊂ IM do
6: for each n in Ncurr do
7: from CFG:
8: for all assignments to n do
9: Nn.append(nassgnd)

10: Nn.append(nguard)
11: end for
12: Construct Gn(Nn)
13: Ncurr ← Nn

14: end for
15: Gdepndncy ← combine and add(all Gn)
16: end while
17: IC ← Ncurr

18: return Gdepndncy , IC

‘lck’, ‘D out’, and ‘nrst’. ‘clk’ is excluded from the relevant
nets list since clock signals have a consistent role and are
independent across all RTL designs. Issues related to clock
signals, including clock trees, are detected through their impact
on other nets. These nodes are represented by Ncurr (line 4).
They are used as starting nodes, and the dependency graph
of the module can be constructed with the CFG of Listing 2.
A dependency graph is constructed for the statements that

are related to Ncurr. For each statement, Nn is augmented
with its guard and assignment nets (lines 8-11). However, if
n is an input net, it is also appended to Nn. This concludes
the first level of a dependency graph (line 13). A level is
defined by the current set of nodes and the nets they are
directly dependent on. After constructing the first level, the
next level is obtained that reflects the updated ‘current set of
nodes’ (line 6). This process will continue until Ncurr ⊂ IM
(line 5), and the final dependency graph Gdepndncy can be
obtained (line 15). The final value of Ncurr only contains the
input nets for stimulating the paths related to the given security
property set, P . Therefore, the value of Ncurr is copied into
the input set governing the nets related to the security property,
IC (line 17). IC will be used for generating restriction for
simulation testbenches and spectrum analysis to verify the
security property set P . The dependency graph, Gdepndncy ,
will be used to calculate the trust score of all the intermediate
nets in the design, thereby all the statements in the RTL code.
Moreover, the processing of input signals in Algorithm 1 varies
depending on the design and security considerations, resulting
in the reduction of input pins and sliced paths during bug
detection through simulations in the majority of instances. We
elaborate this in Section III-B2 and Section III-B3a.

b) Slicing Simulation Path: In order to generate test
cases for spectrum analysis and streamlining simulations,
RTL-Spec employs a technique known as path slicing on the
CFG. Path slicing defines a focused path for the simulation,
inhibiting excessive route exploration, thus rendering the basis

Algorithm 2 Test Case Generation and Testing.
Input: M, IC , UM , Gdepndncy , Pinf

Output: WC ;

1: I ′C ← (UM − IC)
2: CwI ← create class(UM )
3: CwI ← Constraints apply(IC ,Pinf )
4: CwI ← randomize(I ′C)
5: generate T B
6: M simulation←−−−−−−− T B
7: collect Sdata
8: Sdata ← purge data(I ′C)
9: label Sdata

10: each IC
assign←−−−− w

11: construct WI

12: WC

Gdepndncy←−−−−−−− WI

13: return WC

for creating testbenches. Additionally, specific constraints are
established using P to guide the generation of test patterns,
ensuring that the simulation concentrates solely on elements
within this sliced path. To provide a clearer understanding of
path slicing, an example from Section III-B1a will be used.

The property in Listing 4 specifies the characteristics of the
‘D out’ net. Therefore, all statements that assign to ‘D out’
must be verified and the property is only valid when ‘nrst’
equals 1. As a result, our slicing criteria should include all
lines that assign to ‘D out’ while ‘nrst’ is set to HIGH (i.e.,
lines 11 and 14 in Listing 2).

In order to generate the simulation path, the assignment
statement on line 11 of Listing 3 is used as a starting point,
which has a branch of “2,2”. Here the rightmost “2” indicates
that that the statement belongs to the conditional block labeled
as “2”. The preceding statement that belongs to the same
branch of “2,2” is searched. It is either a condition statement
‘C’ or an always block ‘Alws’. In this case, line 10 is
the preceding statement. Subsequently, the previous condition
statement with a branch of “2” is looked for and the next
preceding statement is found on line 3. We repeat this process
until we reach a statement of type ‘Alws’. Since line 3 is an
‘Alws’ type statement, we have completed the path generation
to reach line 11 (Listing 3). Therefore, the final sliced path is
achieved and shown in Listing 5.
3 lck_reg :: 2 :: clk == 1 or nrst == 0:: Alws;

10 lck_reg :: 2, 2 :: wr_en & unlocked == 1 :: C;
11 lck_reg :: 2, 2 :: D_out <== D_in :: A;

Listing 5: Final sliced Path for Listing 2.
With the sliced path, we acquire the condition and net value

required to reach the assignment statement line 11. Therefore,
simulation constraints can be created to generate input patterns
and directly verify the sliced path. The constraints have to alter
the input values for ‘wr en’ and ‘unlocked’, while keeping the
value of ‘lck’ to HIGH and thereby check if for any case a
value can be assigned to ‘D out’.

2) Simulating Test Cases based on the Input Coverage:
RTL-Spec uses simulation to verify whether the RTL code
satisfies the defined property and generate output dataset that
will be used as test cases to run spectrum analysis. The test
cases are categorized as “passed” or “failed”. If there exists



no failed cases, the RTL design is considered as secure and
no further analysis is needed. However, if there are failed
case(s), the following modules of RTL-Spec, discussed in
Section III-B3, are employed to localize to buggy statement.
In order to reduce the test cases needed, RTL-Spec generates
the input patterns using the dependency graph Gdepndncy and
simulation test cases. RTL-Spec generates a testbench that
only excites the sliced paths by setting input patterns for the
statements under verification. Only the inputs that directly
affect the path will be modified, while the other inputs will
possess random values. Once the simulations are completed,
the results are labeled showing whether the input patterns lead
to a successful or failed run.

Algorithm 2 shows the process flows of optimizing the
testbench and launching a controlled simulation. It utilizes the
RTL design M, inputs covering the property IC , and all of
the inputs UM to simulate the sliced paths Pinf . We identify
the input nets I ′C by creating a subset of UM excluding IC
(line 1). An interface, IFM , is constructed for the testbench
to connect to the design under test (DUT), and a class, CwI ,
is generated which assigns input patterns and restrictions
for simulation (lines 2-4). For example, a class, shown in
Listing 6, can be generated for the design in Listing 2. For
example, in this class, input nets ‘wr q’ and ‘D in’ are not
relevant to verify the property. It should be noted that “D in”
is not a control net, and the probability of it being 0 is
very low. Even if it does occur, it has no notable impact
on the localization result; therefore the assumption remains
valid. Hence, their values will be assigned random bits. The
test sequence contains the input pattern for ‘nrst’, ‘wr ack’,
‘wr val’, ‘lck’, and ‘debug’ respectively from least significant
bit (LSB) to most significant bit (MSB). Since the property
is disabled when “nrst == 0”, we create a constraint where
“nrst = 1”.

1 `define test_seq_len 5
2 class io_seq_gen;
3 rand bit wr_q;
4 rand bit [31:0] D_in;
5 randc bit [`test_seq_len - 1 : 0] seq_in;
6 constraint reset2zero {seq_in[0] == 1;}
7 endclass //io_seq_gen

Listing 6: Sequence Generator Class for Simulation.
After setting up the constraints and rules in CwI , we generate

the testbench and launch the simulation with the testbench
(lines 5-6). We collect the simulation results and construct a
table Sdata which only contains test cases of IC (lines 7-
8). Each of the test cases is labeled as “Passed” or “Failed”
based on whether the property, P under verification is satisfied
(line 9). Each input of IC will be assigned a trust score
(defined in Section III-A), w, and a vectorWI will be created,
representing the trust score of IC (lines 10-11). FromWI , we
use Gdepndncy to construct another vector,WC , that represents

trust score of all the nets inM. The vector WC contains trust
scores for each net in the design. Initially, trust scores are
set through continuous assignments, as shown in line 9 of
Listing 2 of the paper (e.g., “unlocked” is assigned the value
“!lck | debug,” resulting in an initial trust score of 1+0

2 = 0.5).
Nets without such assignments start with a trust score of 1.

3) Executing Spectrum Analysis: Once the slicing, simu-
lation of the sliced path, and labeling of test cases are com-
pleted, spectrum analysis is performed on the RTL code. The
execution of spectrum analysis entails the creation of vectors
to bind the nets to the CFG, followed by the computation of
suspiciousness scores and bug localization. RTL-Spec uses this
process to rank the statements in the RTL code based on their
probability to cause the violation.

a) Binding Nets to CFG: RTL-Spec binds the nets to
the CFG statements using a binding vector as shown with
the block named “Binding Net to CFG” in Figure 1. This
binding vector represents the correlation of each net with
each statements in the RTL codes. This enables RTL-Spec
to establish a correlation between input patterns and RTL
code statements. Furthermore, the binding vector helps in
calculating statement trust scores efficiently.

The binding vectors represent a numerical value for each
statement in the CFG. From the CFG, we generate these
vectors and use the dependency graph, Gdepndncy to update
each vector during the calculation. The trust score of a net is
the average of the input nets in the final level of Gdepndncy . For
example, the input nets in the final level of the dependency
graph consist of ‘lck’ and ‘debug’ for ‘unlocked’. The trust
score of ‘unlocked’ is set to 0.5 (average trust score of ‘lck’= 1
and ‘debug’= 0). The vectors consist of three elements: the
previous cumulative trust scores, the datatype values, and the
net roles. These elements capture the trustworthiness of each
statement based on the control flow.

To illustrate this, we use the example in Listing 2. Table I
shows the binding vectors for line 1 and line 10 from Listing 3
in the second and third rows, respectively. The fourth row
shows the weight vector of the nets, WC . The vector for
each statement has three parts: the first part is the cumulative
trust score of the previous conditions in the CFG; the second
part is the type of statement (‘0’ for assignment and ‘1’
for condition); and the third part is the net roles in the
statement. The net roles are encoded as ‘0’, ‘1’, or ‘2’, where
‘0’ means the net is absent, ‘1’ means the net contains the
assigned value, and ‘2’ means the net is being assigned. This
representation can facilitate the calculation of the trust score of
each statement. When we create the binding vector of the CFG,
we initialize all the statements with a trust score of 1. As we
traverse through the CFG statements, we update the cumulative
trust score of each statement based on control flow. To update
the cumulative trust score, we multiply the statement’s current

TABLE I: Binding Vector of Statements from the CFG and Weight vector of Net Trust Scores.

Cumulative
Probability

Statement
Type clk nrst wr q wr ack lck debug wr val wr req wr done unlocked wr en D in D out

Line 1 1 0 0 0 0 0 1 1 0 0 0 2 0 0 0

Line 10 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0

WC 1 1 1 1 1 0 1 1 0.75 0.5 1 0.83 1



Algorithm 3 Suspicion Score Calculation.
Input: WC , CFGM , CFGV
Output: CFGw;

1: for all StV in CFGV do
2: StV l ← StV [2 ::]
3: StV l ← dec2bin(StV l)
4: StVm ←MSB(StV l)
5: StV l ← LSB(StV l)
6: StV [0]← Stch
7: Stts = StV [0]× 1

n ×
∑

(StV l ×WC)
8: if(StV [1] == 1) Stch ← Stts
9: end for

10: return CFGw
cumulative trust score with the corresponding guard condition
(defined in Section III-A). If no guard condition is present, the
cumulative trust score is multiplied by one per initialization.
Next, we use the binding vector of the entire CFG and
the weight vector (WC) to calculate the trust score of each
statement. We take the LSB of the net values from the binding
vector to create a sub-vector and multiply it with WC . This
yields the total trust score for the statement. Next this score
is assigned to the net possessing the MSB with a value of 1
in the binding vector. Finally, the vectorized CFG, CFGV is
returned, incorporating the updated trust scores.

b) Calculating Suspiciousness Level in the CFG State-
ments: This module of RTL-Spec is responsible for calculating
suspiciousness of the statements in the CFG. We compute the
suspiciousness of the statements in the CFG to localize the
buggy statements using Algorithm 3.

The trust score vector, WC , CFGM and CFGV are taken
as inputs for this algorithm. Each of the vectors in CFG is
represented as StV . For all vectors in CFGV , a sub-vector,
StV l, is created by taking every element from the third element
(line 2). The values of StV l are converted to binary (line 3).
Two vectors StVm and StV l are created by taking the MSB
and LSB, respectively (lines 4-5). Equation 3 is used to
calculate the trust score of the statements (line 7):

Stts = StV [0]× 1/n×
∑

(StV l ×WC) (3)

Here, n is the number of 1’s in StV l and StV [0] is the
cumulative trust score. We update the Stch with Stts (line
8 in Algorithm 3). We append the trust score, Stts to the
statements in CFGM . For example, the suspiciousness score
calculation for line 1 in Listing 3 is as follows:

Stts = 1 ×
1

2
×

∑
([0 0 0 0 1 1 0 0 0 0 0 0 0]

×[1 1 1 1 1 0 1 1 1 1 1 1 1])

Stts =
1

2
×

∑
([0 0 0 0 1 0 0 0 0 0 0 0 0])

Stts =
1

2
×1 = 0.5

(4)

Here, StV l is taken from the first row of Table I.
c) Bug Localization: Once calculation of the trust score

for each statement in the CFG is accomplished, suspiciousness
scores are assigned to the statements. These scores are ana-
lyzed in order to localize the bugs. Negative log of the trust
scores are calculated using the following equation:

(a) Incorrect statement. (b) Missing statement.

Fig. 2: Bug localization.

Stl = −log(Stts) (5)

Logarithmic scales are employed to expand the measurement
range of lower trust scores. With the assignment of the suspi-
ciousness score to each statement, the location of the bug can
be ascertained through analysis of the score distribution across
all statements. Bugs are classified into two categories, whether
they are caused by an incorrect or a missing statement.
1 lck_reg :: 0 :: unlocked <== !lck | debug :: A; 0.8
2 lck_reg :: 1 :: wr_en <== wr_val & wr_ack :: A; 0
3 lck_reg :: 2 :: clk == 1 or nrst == 0:: Alws; 0
4 lck_reg :: 2, 0 :: wr_q == 1 :: C; 0
5 lck_reg :: 2, 0 :: wr_req <== 1 :: A; 0
6 lck_reg :: 2, 1 :: ++++ELSE++++ :: C; 0
7 lck_reg :: 2, 1 :: wr_req <== 0 :: A; 0
8 lck_reg :: 2, 1 :: !nrst == 1 :: C; 0
9 lck_reg :: 2, 1 :: D_out <== 16'h0000 :: A; 0

10 lck_reg :: 2, 2 :: wr_en & unlocked == 1 :: C; 0.8
11 lck_reg :: 2, 2 :: D_out <== D_in :: A; 1
12 lck_reg :: 2, 2 :: wr_done <== 1 :: A; 0.8
13 lck_reg :: 2, 3 :: !wr_en == 1 :: C; 0
14 lck_reg :: 2, 3 :: D_out <== D_out :: A; 0

Listing 7: Scored CFG.
Once Stl for all statements are obtained, the cause of the
bug can be determined by examining the score distribution
for all statements, as depicted in Figure 2. Figure 2a illustrates
the suspiciousness score distribution of the CFG in Listing 7.
Listing 7 represents the scored version of Listing 3. The
process of determining whether a security breach occurred due
to a missing or incorrect statement involves calculating the “z-
score” of the suspiciousness score for each statement [35]. In
statistical analysis, z-score is calculated using Equation 6.

z =
x− µ

σ
(6)

Here, ‘x’ is the suspiciousness score of a statement. µ denotes
the average suspiciousness score and σ is the standard devi-
ation for the suspiciousness score of the corresponding block
the statement is located in. In case of a missing statement,
for every statement x = µ, thereby making the z-score for
every statement would be 0. However, if there exists a buggy
statement, every other statement’s z-score would be a negative
value and only the buggy statements would have a positive z-
score value. For example, in Listing 7, z-score for line 11
is 14.94 and for the other statements the z-score is −7.53.
Therefore, the presence of a positive z-score makes the bug
an “Incorrect statement” type bug. In case of Bug # IV from
Table II, all the statements in the suspected block had an
z-score of 0, thereby making it a “Missing statement” type
bug and the suspiciousness score distribution is shown in
Figure 2b. Henceforth, in this paper, the “Incorrect statement”
and the “Missing statement” type bugs will be referred to as
“I” type and “M” type, respectively.



IV. EVALUATION AND RESULTS

This section presents the experimental evaluation for RTL-
Spec. We outline the experimental setup and evaluation metric
used to assess RTL-Spec followed by concise bug explanations
and analysis of RTL-Spec’s performance.

A. Experimental Setup and Evaluation Metrics
RTL-Spec (developed in Python 3.9, and uses NumPy and

Pandas libraries) computes the suspiciousness score of RTL
code statements using statistical analysis. A flawed version of
PULPissimo SoC for the Hack@DAC2018 competition was
used to evaluate RTL-Spec ’s bug detection and localization
capabilities. This benchmark represents a simplified industrial
SoC configuration with common security flaws and can be
generalized to other SoC benchmarks.

In order to evaluate the effectiveness of the localization
technique in RTL-Spec framework, we introduce a commonly
used metric for assessing software bug localization techniques,
the top-k hit metric. It measures the percentage of true faulty
statements that are within the top-k results ranked by suspi-
ciousness score [36]. To assess the performance of RTL-Spec,
we also measure precision, which indicates the percentage of
ranked statements that are true positives (i.e., responsible for
the fault). Any statement not responsible for the fault but that
is ranked by the fault localizer is a false positive. Precision is
formally defined as follows:

Precision =
#TP

#TP +#FP
(7)

In Equation 7, true positives (TP) and false positives (FP)
refer to the statements that are correctly and incorrectly de-
tected by RTL-Spec in the RTL code respectively. In scenarios
where bugs entail missing statements, the calculations of TP
and FP are conducted at the block level. TPs are evaluated
with assertion mutation model, adopted from [37]. A TP is
an occurrence that directly causes a property violation, or
cause subsequent operations to violate property, or lack critical
statements leading to a property violation. As discussed in
Section III-B3c, the blocks are employed as the units to rank
suspiciousness, such that a true positive block represents the
block where the missing statement was supposed to be located.

B. Analysis of Security Properties
This section presents a detailed analysis of the bugs used to

evaluate RTL-Spec’s localization potential. Traditional tools
were adept at identifying the flawed IPs, and the precision
assessment was contingent upon the codebase unique to each
IP with a bug. We examine the characteristics of each bug,
including its effects on system functionality and security, and
elucidate our methods for identifying them in the source code.

1) Bug I: In this bug, shown in Listing 2, the locked register
can be written if it is in debug mode. RTL-Spec was able
to reduce the number of simulation test cases from 26 to 24

by only controlling four out of six relevant input pins. By
running spectrum analysis on these test cases, RTL-Spec was
able to narrow down the probable location of the bug to just
four lines (lines 9, 15, 16 and 17) out of 17 lines of RTL
code from Listing 2 (excluding the module declarations), with
lines 9, 15, and 16 being TP and line 17 being FP. RTL-Spec
classified it as a ‘I’ type bug.

2) Bug II: This bug is shown in Listing 1. Here, the
password-checking function must verify the entire password,
allowing access to the advance debug unit (ADU) of the
SoC via the JTAG module. The access is granted only if the
condition correct ≥ 32′h0001 FFFF is true (line 6). As
‘correct’ cannot reach the value of 32′h0001 FFFF , due to
the password length limitation, the ADU becomes completely
inaccessible. RTL-Spec correctly identifies line 6 in Listing 1
as the most suspicious, reducing potential lines to inspect from
approximately 300 to one indicating it as an ‘I’ type bug.

3) Bug III: This bug is also represented in Listing 1.
The SoC security property necessitates a password-checking
sequence to restart upon a mismatch. However, in Listing 1,
the ADU fails to reset its progress for incorrect inputs. This
vulnerability enables adversaries to supply incorrect inputs
out of order, posing a significant security flaw. RTL-Spec
identified the problematic function on lines 4 to 10 in Listing 1,
where the expected protocol inconsistency occurred. No peak
was detected, indicating a ‘M’ type bug in the design.
1 always @(posedge tck_pad_i or negedge trstn_pad_i)
2 begin if(trstn_pad_i == 0) begin
3 TAP_state = `STATE_test_logic_reset;
4 pass = 32'hDEADBEEF; end
5 else TAP_state = next_TAP_state;
6 ...
7 case(TAP_state)
8 `STATE_test_logic_reset: begin
9 passchk = 0;

10 if(tms_pad_i)
11 next_TAP_state = `STATE_test_logic_reset;
12 else next_TAP_state=`STATE_run_test_idle; end

Listing 8: Code snippet for Bugs #IV, #V.
4) Bug IV: Listing 8 shows Bug IV. The SoC security

protocol mandates a full reset of all function information
registers upon receiving a reset signal to restore the module to
its default state. In the ADU, despite resetting the FSM state
and password, certain registers like ‘bitindex’ and ‘correct’
remain unchanged. This oversight allows unauthorized access
after a reset, as previous password attempts are not cleared.
RTL-Spec has identified two blocks of code with 18 suspicious
statements and categorized Bug IV as ‘M’ bugs.

5) Bug V: The ADU’s access password is hard-coded in
Listing 8 at line 4. RTL-Spec identified a vulnerability between
lines 1-5, along with three ‘always’ blocks sensitive to clock
and reset signals. The ‘pass’ net is influenced by only two pins,
‘tck pad i’ and ‘trstn pad i’. The absence of input pins asso-
ciated with ‘pass’ suggests a missing statement. The password,
hardcoded in one of four ‘always’ blocks, was considered
equally suspicious by RTL-Spec due to concurrent execution
and similar sensitivities. While placing reset logic in any of
these blocks yields the same effect, three other detected blocks
were wrongly placed in different code locations. Consequently,
RTL-Spec classified this issue as an ‘M’ type bug.
1 assign update_sec = sec_counter == 15'h7FFF;
2 assign update_min = update_sec & (r_sec == 8'h59);
3 assign update_h = update_min & (r_min == 8'h59);
4 assign update_day = update_h & (r_h == 6'h23);
5 ...
6 always @(posedge clk_i or negedge rstn_i) begin
7 if(!rstn_i) sec_counter <= 'h0;
8 else begin
9 if (clock_update_i)

10 sec_counter<={init_sec_cnt_i,5'h0};



11 else sec_counter <= sec_counter + 1; end end

Listing 9: Code snippet for Bug #VI.
6) Bug VI: The time controller module’s “rtc clock” unit

performs time calculation using faulty logic, as outlined in
Listing 9. The registers for minutes, hours, and days are
updated using the values 8’h59, 8’h59, and 6’h23, respectively.
However, these values are provided in hexadecimal format
instead of decimal, resulting in a flawed clock operation. RTL-
Spec highlighted suspicious statements in lines 1, 2, 3, and 4
of Listing 9, leading to the classification of these statements
as incorrect. The inputs update the ‘r sec counter’, which
updates the minutes, hours, and days. Therefore, the buggy
statements had a lower suspiciousness score than lines 10 and
11. Here, lines 1-4 are TP and lines 10, 11 are FP. RTL-Spec
labels the bug as a ‘I’ type bug.

1 else if (write & !Write_once_status) begin
2 Data_out <= Data_in & 16'hFFFE;
3 Write_once_status <= Data_in[0]; end

Listing 10: Code snippet for Bug #VII.
7) Bug VII: The log-in record register is designed as

a write-once system, as described in Listing 10. The
‘Write once status’ flag remains inactive until the LSB of
‘Data in’ becomes TRUE (line 3). Therefore, the tested mod-
ule was found to write multiple times without activating the
‘Write once status’ flag, indicating an ‘I’ type bug.
1 case (CS)
2 3'h0: state = 2'h5;
3 ...
4 3'h5: state = 2'h1;
5 endcase

Listing 11: Code snippet for Bug #VIII.
8) Bug VIII: Listing 11 demonstrates a bug in which

incorrect inputs can lead to the FSM entering an illegal state,
resulting in unexpected system behavior. The absence of a
‘default’ case in the case block causes the FSM to reach an
undefined state. The bug is detected and localized in the case
block by RTL-Spec. Running inputs that assign values to ‘CS’
reveals two cases where the system enters an undefined state
and becomes unresponsive. It is classified as a ‘M’ type bug.

1 if(outstanding_trans_i) NS = OPERATIVE;
2 else if (error_gnt_i) NS = OPERATIVE;
3 else NS = ERROR;

Listing 12: Code snippet for Bug #IX.
9) Bug IX: The AXI decoder halts in an error state, as

illustrated in Listing 12. It transitions ‘NS’ to “operative”
when there is an outstanding signal, exiting the error state
(line 1). RTL-Spec detected the bug using targeted stimulation
of ‘CS’ and ‘NS’. Only 11 out of 2064 input pins were selected
for simulation. By slicing paths to the error state, RTL-Spec
reduced the number of test cases to 32. RTL-Spec’s spectrum
analysis identified line 1 as the most suspicious statement, thus
classifying the bug as a ‘I’ type bug.

1 always_ff @(posedge HCLK, negedge HRESETn) begin
2 if(!HRESETn) begin
3 r_gpio_inten <= '0;
4 ...
5 r_gpio_lock <= '0;
6 for (int i=0;i<32;i++)
7 gpio_padcfg[i] <= 6'b000010; end

Listing 13: Code snippet for Bug #X.

10) Bug X: In this case, the SoC security property dictates
that lock controls must not be cleared after a reset. From
Listing 13, it can observed that the property is being violated in
the GPIO module as the lock control is set to “1b′0” following
a reset (line 5). The bug is identified and located by RTL-Spec
at line 292 of the design (line 5 of Listing 13). It is classified
as an ‘I’ type bug.
1 case (State_SP)
2 IDLE: begin
3 ...
4 default : /* default */ ;
5 endcase

Listing 14: Code snippet for Bug #XI.

11) Bug XI: In the absence of a default state and incomplete
conditions in the FSM cycle, the ALU enters an undefined
state, as shown in Listing 14. This introduces a security
vulnerability causing the instruction handling to malfunction.
RTL-Spec identifies this vulnerability and designates the case
statement block in the RTL design of the ALU as highly
suspicious marking it as a ‘M’ type bug.
1 always @(posedge clk) begin
2 if(d[0] == 1'b1) c = aes_out;
3 ...
4 if(d[3] == 1'b1) c = temperature_out;
5 else c = 0; end

Listing 15: Code snippet for Bugs #XII, #XIII.

12) Bug XII: In Listing 15, it can be observed that the reset
functionality is lacking in the cryptographic MUX module,
which is responsible for handling the MAC output. Conse-
quently, the module’s output remains unchanged during a reset.
There is no statement accounting for reset operation, resulting
in compromising the integrity of cryptographic modules in the
SoC. Owing to the lack of a reset statement, the entirety of
the “always” block is designated as a faulty block, creating a
security vulnerability. This bug is labeled as a type ‘M’ bug.

13) Bug XIII: As demonstrated in line 4 of Listing 15,
the cryptographic MUX module obtains output data from a
temperature sensor instead of the cryptographic blocks. As a
result, in this state data obtained from the cryptographic MUX
is unencrypted and does not contain any information other than
the sensor value. RTL-Spec identified line 4 along with lines 2-
3 as faulty statements in the design. In this case, Line 5 had a
lower suspiciousness score, therby this bug is categorized this
bug as a ‘I’ type bug.
1 always @(posedge tck_i) begin
2 if(idcode_sel & shift_dr)
3 idcode_reg <= {td_i, idcode_reg[31:1]};
4 else idcode_reg <= `IDCODE_VALUE; end

Listing 16: Code snippet for Bug #XIV.

14) Bug XIV: The JTAG decoder disregards the LSB when
examining the input for the ID code, as evident in line 3
of Listing 16. Due to the faulty logic in line 3, RTL-Spec
recognizes this as an ‘I’ type bug.

C. Performance Evaluation
Table II summarizes the evaluation results of RTL-Spec’s

localization capabilities using precision and top-k rank metric.
It also describes the bugs used in the evaluation, including
their numbers, descriptions, CWE categories [38], and types.



TABLE II: Description of Bugs Used for Evaluation.

Bug
No. Bug Description CWE

Category
Bug
Type

Rank in
Spectrum

True
Positives

False
Positives

Precision
(%)

I Locked Register can be written in locked state if debug mode is ON. CWE-1199 I 2nd 3 1 75

II Password checking can never be passed logic in advanced debug unit. CWE-1207 I 1st 2 0 100

III Wrong password input does not clear password check progress. CWE-1203 M 1st 1 0 100

IV Reset signal does not clear the number of correct inputs. CWE-1206 M 1st 2 0 100

V Password is hard-coded and set on reset. CWE-1207 M 1st 1 3 25

VI Faulty logic in the RTC causing inaccurate time calculation. CWE-1203 I 2nd 5 3 62.5

VII Registers can be written more than once. CWE-1199 I 1st 1 0 100

VIII FSM goes to an undefined state. CWE-1199 M 1st 1 0 100

IX AXI Decoder ignores error flag. CWE-1199 I 1st 1 0 100

X Reset clears all lock controls in GPIO module. CWE-1206 I 1st 1 0 100

XI Incomplete case statements in ALU can cause unpredictable behavior. CWE-1199 M 1st 1 0 100

XII Output of MAC is not erased on reset. CWE-1206 M 1st 1 0 100

XIII Temperature sensor is muxed with the cryptography modules. CWE-1199 I 1st 1 3 25

XIV Instruction ID is not updated correctly. CWE-1199 I 1st 1 0 100

The bug types are either “I” for incorrect statements or “M”
for missing statements. The table shows the rank of the faulty
element, the number of TPs, FPs, and the precision of RTL-
Spec ’s localization for each bug. For instance, Bug #I’s faulty
statement has the 2nd rank based on its suspiciousness score.

Analysis of the fifth column reveals that 12 out of 14
bugs are situated within the highest-scoring statement or block
(the exceptions were Bugs #I and #V). Further examination
of the eighth column shows that RTL-Spec achieved 100%
precision on 10 out of 14 bugs. However, the results for
Bugs #VI and #XIII exhibited low precision scores. In the
case of Bug #VI, all “always” blocks obtain identical rankings,
since they are solely sensitive to the clock and reset signals.
Despite being declared at different locations in the RTL code,
these blocks are executed simultaneously under identical sensi-
tivities. This implies that the insertion of the missing statement
in Bug #VI within any of these four “always” blocks would
yield identical results. Nevertheless, these “always” blocks are
situated disparately within the RTL code. In assessing the
precision of RTL-Spec in this context, it is considered that
three of the other “always” blocks are identified erroneously
as false positives. Consequently, the precision of RTL-Spec in
pinpointing the exact “always” block is reduced. Regarding
Bug #XIII, the nets responsible for selecting the temperature
sensor as output are guard nets. Therefore, all four assignments
under the guard condition received an equal suspiciousness
score, thereby detecting all four statements as the origin of
the bug. In this case, as one of the statements in the block has
a lower suspiciousness score, the z-score for the other four
statements is a non-zero value. Therefore, RTL-Spec identifies
this as an ‘I’ type bug.

During evaluation, the CFG generation time varies between
80-200 ms, depending on the code size (183ms on a codebase
of around 1500 lines including comments and declarations).
The spectrum analysis, which assigns suspiciousness scores
to individual statements, typically takes around 100-150 ms.
The overall process took 300-500ms. RTL-Spec used no more
than 4GB of memory, and the octa-core processor clock speed

remained 3.4GHz utilizing four cores during its run-time.
RTL-Spec can handle designs with large number nets by
computing suspiciousness scores with vector operations.

The findings suggest that RTL-Spec has the ability to iden-
tify erroneous statements or blocks by analyzing the impact
of inputs on property violations. Two key factors reduced the
precision in the evaluation process. First, we observed similar
preceding conditions in the case of Bug #V and #XIII. Second,
there were shared input net dependencies across multiple nets,
as exemplified by Bug #I and #VI. While the second factor
rarely results in severe false positives, the first type is common
in RTL designs and significantly impacts precision.

V. CONCLUSION

This paper introduces RTL-Spec, which for the first time,
enables localization of security vulnerabilities within the RTL
code of SoC designs. A distinctive feature of RTL-Spec is its
ability to correlate inputs and outputs from simulations with
individual RTL statements, enabling precise identification of
manifested security vulnerabilities. When a security breach oc-
curs, RTL-Spec efficiently identifies the faulty statement(s) in
the RTL design. RTL-Spec was evaluated with the Pulpissimo
SoC used in “Hack@DAC2018” competition [19]. The RTL-
Spec framework accurately identifies all 14 vulnerabilities
illustrating how each input pin impacts other components in
the design. It achieves 100% precision in 10 out of the 14
cases. RTL-Spec enhances the security verification process by
eliminating unnecessary simulation paths and localizing faulty
statements which significantly reduces the time and cost of
debugging in pre-silicon security verification. In the future,
we plan to refine the framework to provide a more precise
localization for the missing statements that invoke security
vulnerabilities. In particular, we intend to investigate param-
eters that distinguish between blocks declared in different
locations of the RTL code, albeit having similar dependencies.
Our future work also involves classifying testcases without
property-based verification, which would allow us to detect
and locate bugs without requiring properties.
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