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Abstract
Despite their ability to detect critical bugs in software, static analysis tools’ high false posi-
tive rates are a key barrier to their adoption in real-world settings. To improve the usability
of these tools, researchers have recently begun to apply machine learning techniques to clas-
sify and filter incorrect analysis reports. Although initial results have been promising, the
long-term potential and best practices for this line of research are unclear due to the lack
of detailed, large-scale empirical evaluation. To partially address this knowledge gap, we
present a comparative empirical study of three machine learning techniques—traditional
models, recurrent neural networks (RNNs), and graph neural networks (GNNs)—for classi-
fying correct and incorrect results in three static analysis tools—FindSecBugs, CBMC, and
JBMC—using multiple datasets. These tools represent different techniques of static anal-
ysis, namely taint analysis and model-checking. We also introduce and evaluate new data
preparation routines for RNNs and node representations for GNNs. We find that overall
classification accuracy reaches a high of 80%–99% for different datasets and application
scenarios. We observe that data preparation routines have a positive impact on classifica-
tion accuracy, with an improvement of up to 5% for RNNs and 16% for GNNs. Overall, our
results suggest that neural networks (RNNs or GNNs) that learn over a program’s source
code outperform traditional models, although interesting tradeoffs are present among all
techniques. Our observations provide insight into the future research needed to speed the
adoption of machine learning approaches for static analysis tools in practice.
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1 Introduction

Static analysis (SA) tools are designed to detect errors that might jeopardize the correctness,
security, and performance of software applications. Unfortunately, SA tools frequently gen-
erate large numbers of false results. These can be false positives (i.e., non-errors incorrectly
labeled as errors), or false negatives (i.e., real errors that are not detected by the tool). As
a result, developers who use SA tools may spend significant time manually investigating
reports (false positives), and important bugs or vulnerabilities could still be missed (false
negatives). Many regard this issue as a key barrier to using SA tools in practice (John-
son et al. 2013). That is, developers perceive the cost of missing some potential errors as
much lower than the cost of painstakingly analyzing an incomplete list of hundreds or even
thousands of error reports that ultimately turn out be false.

Several researchers have proposed using ML techniques with hand engineered features to
classify and filter false positives (Heckman 2007, 2009; Yüksel and Sözer 2013; Tripp et al.
2014; Utture et al. 2022; Kang et al. 2022). These approaches focus on learning observable
features of the static analysis results. They also tend to include black-box observations of
the target programs. For example, bug type or rule violation type is one commonly used
feature in several approaches (Yüksel and Sözer 2013; Tripp et al. 2014; Heckman 2009).
Potential limitations of these approaches include that feature identification often relies on
manual investigations by experts, and in cases where they have to be extracted from code,
this process can be time-consuming. Furthermore, these approaches are not well-suited to
represent the deep structure of the source code being analyzed, inevitably leading to a loss of
accuracy. To address these limitations, Koc et al. (2017) experimented with neural network-
based learning approaches, which could potentially capture source code-level characteristics
that may lead to false positives. Their evaluation on synthetic benchmarks showed that a
specific type of recurrent neural network significantly improved classification accuracy,
compared to a Bayesian inference-based approach. Given the limited dataset involved in
that study, however, further study is called for.

Overall, while existing research shows potential benefits of using machine learning (ML)
algorithms to classify SA results, there are still important open research questions. First and
foremost, there has been relatively little empirical evaluation of different ML algorithms,
which is of great practical importance for understanding their tradeoffs and requirements.
Second, the effectiveness and generalizability of the features used and data preparation tech-
niques needed for different ML techniques have not been well-investigated for actual usage
scenarios. Third, there is also a need for larger, real-world program datasets to better val-
idate the findings of prior work, which was largely conducted on synthetic benchmarks.
These open problems leave uncertainty as to which approaches to use and when to use them
in practice.

To partially address these limitations, we describe a systematic, comparative study of
multiple ML approaches—traditional models, recurrent neural networks and graph neural
networks—for classifying SA results from three real-world tools (Section 2 overviews our
study). These tools are FindSecBugs (Arteau et al. 2018), which implements a taint analy-
sis for Java, and CBMC (Kroening and Tautschnig 2014) and JBMC (Cordeiro et al. 2018),
which are model checkers for C and Java code, respectively (Section 3). Note that while
these tools cover some major types of static analysis, such as information flow analysis and
model checking, there are other types of static analysis we do not consider (Section 7.5). In
our study, we collected multiple datasets, containing both real-world and artificial program
sets. The real-world dataset we constructed was for FindSecBugs. This dataset contains

28   Page 2 of 44 Empir Software Eng (2023) 28:28



reports from 14 Java programs covering a wide range of application domains and 400
vulnerability reports that we manually classified. For FindSecBugs, we also used 2371
reports from the OWASP dataset, a popular artificial corpus for evaluating static anal-
ysis tools (OWASP 2014). For CBMC and JBMC, we used the well-known SV-COMP
dataset, which aggregates benchmark programs from various contributors into a single cor-
pus (Beyer 2018, 2019). Our SV-COMP dataset consisted of 1000 C programs and 368
Java programs, including both safe and unsafe programs according to a variety of program
verification properties (Section 4).

To accomplish our classification task, we experimented with three families of ML
approaches: traditional models, recurrent neural networks, and graph neural networks
(Section 5.1). We further experimented with several broad representations of the input data.
First, we tried representing programs as hand-engineered feature vectors. Then, we tried
different representations based on the form of the raw input data. Since FindSecBugs emits
reports in the forms of flows from sources to sinks, for that tool we computed backward
slices from the reported sink and used the corresponding program dependence graph (PDG)
(Ferrante et al. 1987). For CBMC and JBMC, which may not emit a specific line we can
slice from, we instead used the abstract syntax tree (AST) of the program (Section 5.2). We
propose and implement multiple ways to use these representations as inputs to ML mod-
els, transforming them to vectors for bag-of-words, sequences of tokens for recurrent neural
networks, and directly supplying them as graphs to graph neural networks (Section 5.3).

We compare the effectiveness of these three families of ML approaches with differ-
ent combinations of data preparation routines. Our experimental results provide significant
insight into the performance and applicability of the ML algorithms and data preparation
techniques. First, we observe that neural networks perform better compared to the other
approaches, with recurrent neural networks and graph neural networks performing the best
at classifying program slices and ASTs, respectively. Second, with more precise data prepa-
ration, we achieve large performance improvements over the state-of-the-art (Koc et al.
2017), up to 89% accuracy on the real-world dataset. Third, we find that the data prepara-
tion for neural networks has a significant impact on the performance and generalizability of
the approaches, and that different data preparation techniques should be applied in different
application scenarios. Finally, we find that despite their overall inferior accuracy, there are
still examples which only the traditional models were able to correctly classify (Section 7).

This work extends our previous work in ICST 2019 (Koc et al. 2019). In that work, we
collected the OWASP and real-world (hereafter referred to as ICST) datasets. This work
additionally includes the SV-COMP datasets for C and Java. In the previous work, we pro-
posed and implemented various data preparation techniques to adapt the ML approaches
we use to the task of triaging reports. These data preparation routines were based on dif-
ferent program representations, specifically hand-engineered features and a program slice
represented by a subgraph of the program dependence graph (PDG). In this work, we adapt
the data preparation techniques to new data and representations – specifically, we add the
abstract syntax tree (AST) as a new program representation from which our models can
learn. The results of this work confirm and expand upon those from our previous work: neu-
ral networks tend to perform best across all datasets, and data preparation has a large impact
on neural network performance.

This article makes the following additional contributions:

– We augmented our previous datasets with reports from two new tools, which verify C
and Java programs. To evaluate the effectiveness of ML techniques on these tools, we
augmented our dataset with 1368 new data points.
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– We present new data preparation techniques based on new program representations that
were not applicable in the previous work. Our data preparation techniques are now
applicable to both program slices, represented as subgraphs of the PDG, and to ASTs
in the case that program slicing is infeasible (e.g., there is no line number in the bug
report).

– We performed large-scale experiments on our augmented datasets to empirically com-
pare the effectiveness of the different ML approaches. We provide more generality to
our previous results, as we still found that neural networks continue to perform best
across both languages and all three tools, and that different data preparation routines
can improve classification accuracy by up to 16%.

2 Overview

Recall that our goal is to study the performance of different machine learning models on
triaging reports of different static analysis tools. Figure 1 summarizes the combinations of
tools, datasets, data preparation routines, and ML models we study.

Our study focuses on static analysis tools for two target languages: C and Java (Column
1 of Fig. 1). We chose these two languages because there are various analyzers and datasets
available for evaluation (Kroening and Tautschnig 2014; Cordeiro et al. 2018; Beyer 2018,
2019; Arteau et al. 2018; Burato et al. 2017). Column 2 shows the static analyzer(s) we used
for each language: CBMC (Kroening and Tautschnig 2014) for C, and JBMC (Cordeiro
et al. 2018) and FindSecBugs (Arteau et al. 2018) for Java. We selected these tools because
they represent different program analysis approaches across different languages, allowing
us to draw more general conclusions from our evaluation. We also selected them because
they are actively maintained, well-known, and accompanied by datasets. These tools and
the configurations under which we ran them are described in more detail in Section 3.

Column 3 shows the program sets we used for each tool. For both CBMC and JBMC, we
used the SV-COMP program set (Beyer 2018, 2019), comprising both C and Java programs
with ground truth data about the presence or absence of bugs. For FindSecBugs, we used
two program sets. First, we used the popular OWASP program set (OWASP 2014). Second,
we used the ICST dataset, which consists of manually classified analysis reports from real-
world Java programs. We constructed this dataset in our preceding ICST work (Koc et al.
2019).

Fig. 1 Study Overview
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Fig. 2 Labels for Training ML Models on CBMC and JBMC data

To train the ML models, we need to label each output of the tool as correct (i.e., a true
positive/negative) or incorrect (i.e., a false positive/negative). We obtained these labels
(Column 4 of Fig. 1) in three main ways. For CBMC and JBMC, we ran the tools on each
program in the program set to get the tool’s determination of the program’s safety and com-
pared that to the ground truth, which is included as part of the program set. Figure 2 shows
how we obtained true/false positive/negative classifications for CBMC and JBMC. For
FindSecBugs on OWASP, the tool output and labels were already available, so we used that
data as is. For FindSecBugs on the ICST program set, we reused the manual classifications
we presented in the previous work. Note that we have no true negative or false negative
reports associated with either the OWASP or ICST datasets; this would require knowledge
of all of the security issues in the target programs, which is unavailable. We describe the
program sets and the obtained datasets in more detail in Section 4.

Column 6 shows the ML models we trained. We tried four discrete experiments, which
are classified based on the representation of the dataset. First, we trained various traditional
models, such as Naı̈ve Bayes (Rish et al. 2001), decision trees (Safavian and Landgrebe
1991), and perceptrons (Rosenblatt 1958) on hand-engineered features (HEF) extracted
from the data. Second, we treated the labeled data as bags of words (BoW), and trained
J48 decision tree models (Quinlan 2014). We chose only J48 as it was the best perform-
ing model for HEF over all the datasets. Third, we trained a recurrent neural network
known as LSTM (long short term memory) on a sequence-based representation of the
data (Carrier and Cho 2018) . Finally, we trained gated graph neural networks (GGNNs)
on a graph representation of the data. We choose LSTM as our RNN implementation,
since they are known to perform better on long sequences and in general provide better
accuracy (Jozefowicz et al. 2015). We choose GGNN for our GNN experiments as it has
achieved state-of-the-art results on problems from program verification (Li et al. 2015a)
and has been designed for tasks where sequence and contextual information is important.
In order to train these models, we used various different program representation techniques
(Column 5 of Fig. 1). More details about the data preparation routines we used and the
models themselves are discussed in Section 5.

3 Tools

In this section, we describe the SA tools we studied in more detail.

3.1 FindSecBugs

The first SA tool we study is FindSecBugs (Arteau et al. 2018), version 1.4.6. FindSecBugs
is a static analyzer for Java programs that focuses on finding security issues. At the time
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of writing, FindSecBugs detects 141 vulnerability patterns, such as using predictable pseu-
dorandom number generators or property leaks. FindSecBugs is well-known and popular.
As of July 2022, its GitHub repository had over 428 forks and 1900 stars (Arteau et al.
2018). FindSecBugs comes with various analyses; we configured it to do taint analysis,
which is capable of detecting SQL, command, CRLF, and LDAP injections; cross-site
scripting (XSS); and path traversal (XPATH) vulnerabilities. FindSecBugs emits alarms in
both HTML and XML format. An example of the HTML format is shown in Fig. 3, which
shows a list of potential vulnerabilities in the H2 program. Bug reports are associated with
a type, a priority (indicated by the color in the left column), sources/sinks, and line num-
bers. For example, the report that is expanded in Fig. 3 indicates that there is a call to
Runtime.exec() that is potentially vulnerable to command injection on line 455 of
FtpServer.java. The alarm type is SECCI (indicating a SECurity Command Injection), and
the red color indicates high priority. The report shows the path the tainted data takes from
the source (line 62 of FtpControl.java) to the identified sink call (line 455 of FtpServer.java).

3.2 CBMC/JBMC

CBMC (Clarke et al. 2004) and JBMC (Cordeiro et al. 2018), the C/Java Bounded Checkers,
can check various kinds of program properties, such as whether a program terminates or
whether it contains buffer overflows. Specifically, these tools use bounded model checking.
This is a technique in which a program is modeled as a finite state machine, and a property
to verify is represented in terms of temporal logic. Then, given some integer bound k, the
bounded model checker constructs a propositional formula that is satisfiable if and only if
a counterexample (i.e., a series of program states that result in the property being violated)
bounded in size by length k exists, and then uses a SAT solver to determine whether the
formula is satisfiable (Biere et al. 1999).

Unlike FindSecBugs, CBMC and JBMC report that programs are either safe or unsafe
with respect to the checked properties. Figure 4 shows an example of the output produced
by running CBMC on a C file, including various assertions it generates and checks. For each
assertion, SUCCESS indicates that the tool was able to prove the assertion true, and thus the

Fig. 3 An example of an alarm reported by FindSecBugs
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Fig. 4 An example of CBMC’s output

safety of the program with regard to that assertion (e.g., that memory allocated with new[]
is later freed). We chose these two tools because they represent a different type of analysis
than FindSecBugs, and they are popular and well known: as of July 2022, the original paper
describing CBMC has over 1700 citations.

Both CBMC and JBMC come with various command-line parameters to tune their
behavior. As observed by Koc et al., these configuration options significantly change the
behavior of the verifiers (Koc et al. 2021). The default configurations of these tools are tuned
to be both sound and precise, frequently failing to terminate rather than produce an incor-
rect result. For this study, we aimed to select a configuration that would produce a balanced
dataset, i.e., classify approximately the same number of programs correctly (i.e., as unsafe if
a fault is present, or safe if a fault is not present) and incorrectly. This is because the scenario
we are evaluating is whether machine learning approaches can assist users in cases when
tools emit many false results. We went through the sample configurations that Koc et al.
(2021) generated from three-way covering arrays (Nie and Hareton 2011) in order to find
such a configuration. For CBMC, we used the configuration --no-assumptions --no-built-in-
assertions --no-self-loops-to-assumptions --refine --slice-formula --depth 100 --unwind 100
--min-null-tree-depth 20 --paths fifo --mm tso --reachability-slice-fb --round-to-minus-inf
--mathsat; for JBMC, we used the configuration –disable-uncaught-exception-check –drop-
unused-functions –full-slice –java-threading –java-unwind-enum-static –no-assumptions –
no-pretty-names –no-self-loops-to-assumptions –nondet-static –slice-formula –string-non-
empty –depth 100 –unwind 100 –max-nondet-array-length 100 –max-nonet-string-length
100 –max-nondet-tree-depth 100 –java-max-vla-length 10 –paths lifo –arrays-uf-never
–reachability-slice –yices.1

1This was one of 24 configurations of JBMC that produced the exact same distribution of correct/incorrect
results on our dataset (Section 4).
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Table 1 A summary of the datasets we used

Dataset Languages Tools # Datapoints (T/F) Label type

OWASP Java FindSecBugs 1124/1193 Bug Reports

ICST Java FindSecBugs 194/206

JBMC Java JBMC 164/204 Verification Results

CBMC C CBMC 483/517

4 Datasets

As discussed in Section 2, we used four datasets in this work (three Java and one C) which
are summarized in Table 1. These datasets include both real-world programs and synthetic
programs. In our previous work, we generated two of these datasets, comprising classified
FindSecBugs reports, including reports from both real-world and synthetic program sets.
In this work, we augmented this collection with two new datasets, consisting of true/false
positive/negative results from JBMC and CBMC.

The first dataset we constructed in our previous work was derived from the OWASP
Benchmark (OWASP 2014), which has been used to evaluate various SA tools in the
literature (Koc et al. 2017; Burato et al. 2017; Xypolytos et al. 2017). OWASP con-
sists of thousands of Java test cases with various known vulnerabilities, each mapped to
CVEs. In particular, we used the same programs as Koc et al. (2017) so we could com-
pare results. Our dataset contains 2 371 FindSecBugs SQL injection vulnerability reports,
1 193 of which are labeled as false positives; the remaining reports are labeled as true
positives.

The second dataset of FindSecBugs reports was classified from a program set of 14 real-
world Java programs. Since this is a program set we constructed in our original publication,
we call this the ICST program set. We ran FindSecBugs on these programs and then man-
ually labeled the resulting vulnerability reports as true or false positives. We chose these
programs using the following criteria:

– We selected programs for which FindSecBugs generates vulnerability reports. To
have the kinds of vulnerabilities we study, we observe that programs should perform
database and LDAP queries, use network connections, read/write files, and/or execute
commands.

– We chose programs that are open source because we need access to source code to
apply our ML algorithms.

– We chose programs that are under active development and are highly used.
– Finally, we chose programs that are small to medium size, ranging from 5K to 1M lines

of code (LoC). Restricting code size was necessary to successfully create the PDG,
which is used for program slicing (Mohr et al. 2021).

Table 2 shows the details of the collected programs. This table shows information that
is up-to-date as of October 2018, which is when we collected them. Several programs have
been used in past research: H2-DB and Hsqldb are from the DaCapo Benchmark (Blackburn
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et al. 2006) (the other DaCapo programs did not satisfy our selection criteria) and FreeCS
and UPM were used by Johnson et al. (2015). These 14 programs range from 6K to 916K
LoC and cover a wide range of functionalities (see the description column). Two programs,
FreeCS and HSQLDB, were downloaded from sourceforge.net and, as of October 2018,
have 41K+ and 1M+ downloads, respectively. The remaining 12 programs were downloaded
from GitHub and have a large user base with 5 363 watchers, 24 723 stars, and 10 561 forks
(as of Oct 2018).

Running FindSecBugs on these programs resulted in more than 400 vulnerability reports.
We labeled 400 of these reports by manually reviewing the code, resulting in 194 true
and 206 false positives as ground truths. To label a SA report, we first compute the
backward call tree using Eclipse’s built-in support for constructing call hierarchies from
the method that has the reported error line (Eclipse Foundation 2022a). Then we per-
form a depth-first search on the backward call tree, inspecting the code in all callers
until either we find a data-flow from an untrusted source (e.g., user input, http request)
without any sanitization or safety check—indicating a true positive—or we exhaust the
call tree without identifying any tainted or unchecked data-flow—indicating a false pos-
itive. This process was done manually, using the labeler’s best judgment in terms of
determining whether the data produced by a source was actually tainted and whether
tainted data was ever santized or checked for safety. One author performed most of the
labeling work, then selected about 5% of the classified results to present to the rest

Table 2 ICST program set

Program Description LoC # reports

TP FP

Apollo-0.9.1 distributed config. (Apollo 2018 2018) 915 602 4 6

BioJava-4.2.8 comp. genomics frmwrk (Prlić et al. 2012) 184 040 26 32

FreeCS-1.2 chat server (Andres 2013) 27 252 10 0

Giraph-1.1.0 graph processing sys. (Giraph 2020) 120 017 1 8

H2-DB-1.4.196 database engine (h2db 2022) 235 522 17 30

HSQLDB-2.4.0 database engine 366 902 43 15

(The HSQL Development Group 2021)

Jackrabbit-2.15.7 content repository 416 961 1 6

(The Apache Software Foundation 2022)

Jetty-9.4.8 web server w/servlets 650 663 12 4

(Eclipse Foundation 2022b)

Joda-Time-2.9.9 date and time frmwrk (Joda.org 2021) 277 230 2 3

JPF-8.0 symbolic execution tool 119 186 15 27

(NASA Ames Research Center 2022)

MyBatis-3.4.5 persistence frmwrk (MyBatis 2021) 133 600 3 15

OkHttp-3.10.0 Android HTTP client (Block, Inc 2022) 60 774 10 2

UPM-1.14 password management (Smith 2019) 6 358 2 13

Susi.AI-07260c1 artificial intel. API (Susi.ai 2018) 65 388 47 46

Total – 194 206
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of the authors. This presentation included the detailed step-by-step process of obtain-
ing each classification in the sample. The rest of the authors observed and validated this
process.

Through this review process, we observed that the false positives we found in the ICST
dataset were significantly different from those in the OWASP programs. The false positives
of FindSecBugs usually happen due to one of three scenarios: (1) the tool over-approximates
and incorrectly finds an unrealizable flow; (2) the tool fails to recognize that a tainted value
becomes untainted along a path, e.g., due to a sanitization routine; or (3) the source that
the tool regards as tainted is actually not tainted. In the OWASP dataset, false positives
mostly stem from the first scenario. In our ICST dataset, we mostly see only the second and
third scenarios. This demonstrates the importance of creating a real-world dataset for our
study.

This work contributes two new datasets, which are based on 1368 programs from the
annual SV-COMP Beyer (2018, 2019), in which developers can submit C and Java ver-
ifiers, and to which CBMC and JBMC are regularly submitted. The SV-COMP corpus
is an aggregation of multiple independent artificial benchmarks from various contribu-
tors, and is, to our knowledge, the largest single collection of verification tasks for C and
Java for which the ground truths are known. Each program has associated ground truth,
such that with regard to some property (e.g., memory safety), the program is known to
be safe or unsafe. We used all 368 Java programs included in the corpus, of which 204
(55.4%) are unsafe, and sampled 1000 C programs, of which 517 (51.7%) are unsafe. The
sample we used was the same as the one generated by Koc et al., for their work on SAT-
UNE (Koc et al. 2021). We sampled C programs from SV-COMP because running multiple
configurations on all programs in the corpus (i.e., more than 10000 programs) in order to
identify configurations that gave a balanced configuration would be prohibitively expen-
sive. In addition, the sample we took only consisted of programs that had one ground
truth associated with them. SV-COMP has programs that have multiple ground truths for
different program verification properties, which would introduce noise into the dataset if
we include duplicate data points with different classifications. Since the ground truths are
already known from the dataset, we did not perform manual classification as was neces-
sary for the FindSecBugs’ ICST dataset. Instead, we ran the configurations described in
Section 3.2 and compared the tools’ results to the ground truth to obtain labels. CBMC
produced 457 incorrect results (i.e., false positives or false negatives), 523 correct results
(i.e., true positives or true negatives), and 20 inconclusive results (i.e., where the tool
did not complete analysis within 1 minute). We discarded the 20 inconclusive results.
JBMC produced 204 incorrect results and 164 correct results, with no inconclusive results.
For convenience, we hereafter refer to the subset of the SV-COMP programs for C as
the CBMC dataset, and the subset of the SV-COMP programs for Java as the JBMC
dataset.

5 MLModels and Data Representations

In this section, we describe the three families of models we studied, along with how we
represented and encoded programs as inputs to the machine learning models.
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5.1 MLModels

Our goal in this work is to assess their strengths and weaknesses of different machine
learning models with regard to the problem of classifying static analysis results. In this sub-
section, we provide background on the three families of approaches we studied, as shown
in the last column of Fig. 1.

5.1.1 Traditional Models

We frame the detection of incorrect results as a standard binary classification prob-
lem (Russell and Norvig 2016). Given an input �x, e.g., a point in a high dimensional
space R

D , the classifier produces an output y = fθ (�x), where y = 1 for an incorrect
result (false positive or false negative), and y = 0 otherwise. Constructing such a clas-
sifier requires defining an input vector �x that captures features of programs that might
help detect incorrect results. We also need to select a function fθ , as different fami-
lies of functions encode different inductive biases and assumptions about how to predict
outputs for new inputs. Once these two decisions have been made, the classifier can be
trained by estimating its parameters θ from a large set of incorrect and correct results
{(x1, y1) . . . (xN , yN)}.

We experimented with various instantiations of traditional machine learning models,
specifically naı̈ve Bayes, Bayesian networks, decision trees, random forests, multi-layer
perceptrons, support vector machines, and clustering. These classifiers use relatively sim-
ple (compared to neural nets) models of the data and tend to produce highly interpretable
results. For example, naı̈ve Bayes assumes that all independent variables are statistically
independent from each other2 and thus computes the probability of an example with features
x1, . . . , xn having a label Yi being directly proportional to (Yi)

∏n
j=1 p(xj |Yi) per Bayes’

rule.3

5.1.2 Recurrent Neural Networks

For text classification, recurrent neural networks (RNNs) (Mandic and Chambers 2001;
Hochreiter and Schmidhuber 1997; Gers et al. 2000) have emerged as a powerful alternative
approach that views text as an (arbitrary-length) sequence of words and automatically learns
vector representations for each word in the sequence (Goldberg 2017).

RNNs process a sequence of words with arbitrary length X = 〈x0, x1, . . . , xt , . . . , xn〉
from left to right, one position at a time. For each position t , RNNs compute a vector ht

as a function of the observed input xt and the representation learned for the previous posi-
tion ht−1, i.e, ht = RNN(xt , ht−1). Once the sequence has been read, the average vector
〈h0, h1, . . . , hn〉 is used as input to a logistic regression classifier.

RNNs can take different forms. A standard RNN unit is illustrated
in the figure on the left. During training, the parameters of the
logistic regression classifier and of the RNN function are esti-

mated jointly. As a result, the vectors ht can be viewed as feature representations for xt that
are learned from data, implicitly capturing relevant context knowledge about the sequence

2Two events A and B are statistically independent iff P(A ∩ B) = P(A)P (B).
3p(x|y) = (p(y)p(y|x))/p(x)
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prefix 〈x0, . . . xt−1〉 due to the structure of the RNN. Unlike HEF or BoW, the feature
vectors ht are directly optimized for the classification task. This advantage comes at the
cost of interpretability since the values of ht are much harder for humans to interpret than
traditional models.

Researchers have used RNNs to solve software engineering tasks such as code comple-
tion (Dam et al. 2016) and code synthesis (Kushman and Barzilay 2013; Ling et al. 2016).
Specifically, Koc et al. (2017) conducted a case study using Long Short-term Memories
(LSTM) (Hochreiter and Schmidhuber 1997; Gers et al. 2000), a popular kind of RNN, for
classifying SA false positives. In this work, we study LSTMs as well as they are commonly
applied to NLP programs. Our problem can be treated as an NLP task because 1) our data is
sequential, and 2) it has contextual (long-term) dependencies (Sak et al. 2014) which could
be relevant to classify an SA result as correct or incorrect.

5.1.3 Graph Neural Networks

With RNNs, we represent a program as a sequence of tokens. However, programs have a
more complex structure that might be better represented with a graph. To leverage such
structure, we explore graph neural networks, which compute vector representations for
nodes in a graph using information from neighboring nodes (Gori et al. 2005; Scarselli et al.
2009). The graphs are of the form G = 〈N,E〉, where N = n0, n1, . . . , ni is the set of
nodes, and E = e1, e2, . . . , ej is the set of edges. Each node ni is represented with a vector
hi , which captures learned features of the node in the context of the graph.

The edges are of the form e = 〈type, source, dest〉, where type is the type of the
edge and source and dest are the IDs of the source and destination nodes, respectively.
The vectors hi are computed iteratively, starting with arbitrary values at time t = 0,
and incorporating information from neighboring nodes NBR(ni) at each time step t , i.e,
h

(t)
i = f (ni, h

(t−1)
NBR(ni )

). The function f is defined as a neural network.
Programs can intuitively be represented as graphs (e.g., as an AST) so exploring GNNs

makes sense. In our study, we focus on a variation of GNNs called Gated Graph Neu-
ral Networks (GGNN) (Li et al. 2015b). GGNNs have gated recurrent units and enable
initialization of the node representation. We chose GGNNs because they have achieved
high accuracy on problems from program verification Li et al. (2015a). GGNNs have been
used to learn properties about programs (Li et al. 2015b; Allamanis et al. 2017), but,
to our knowledge, have not been applied to classify SA results outside of our previous
work.

5.2 Representing Programs

Before we use the source code/file for the approaches mentioned in Section 5.1, we must
transform them into representations that can be interpreted by the models. We use two dif-
ferent program representations, one for the programs analyzed by FindSecBugs, and one for
the programs analyzed by CBMC and JBMC.

Each report generated by FindSecBugs contains a source line, indicating the location of
the bug. For example, Fig. 3 shows the source line as being line 455 of FtpServer.java. We
can use this information to narrow down the code to the most relevant parts from the input
data. We use Koc et al.’s preprocessing step (Koc et al. 2017), which is to compute a back-
ward slice (Weiser 1981) of the programs being analyzed starting from the source line in
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Fig. 5 Sample PDG node (simplified for presentation)

the SA report. The backward slice includes all statements that may affect the behavior at
the reported line, hence it should contain highly relevant information for SA report classi-
fication. This is especially useful for the ICST program set, which is composed of large,
real-world programs (see Table 2).

This approach works for FindSecBugs reports, but not for CBMC and JBMC reports,
as the latter do not always include a source line, as can be seen in Fig. 4. For example,
termination checks do not emit a faulty line number if the program is determined not to
terminate. Thus, without a consistent slicing criterion for these tools’ reports, we instead
use the full source code as input, represented as an AST.

5.2.1 Representing Programs as Slices

We computed backwards slices for FindSecBugs results using Mohr et al. (2021), a pro-
gram analysis framework for Java. The first step is determining the entry point(s) from
which the program starts to run. For our problem, we first generate the call hierarchy of the
method containing the error line. We then identify in this hierarchy the methods that can be
invoked by the user, and set those as the entry points. Such methods can be APIs if the pro-
gram is a library, the main method (which is the default entry point), or test cases. Next,
we compute the program dependency graph (PDG), which consists of nodes denoting the
program locations that are reachable from the entry points, and edges denoting control- or
data-flow dependencies between nodes. Then, we identify the PDG node(s) that appear in
the reported source line. Finally, we compute the backward slice from that line to the entry
point(s).

Figure 5 shows an example PDG node. Line 1 shows the kind and ID of the node, which
are EXPR and 164, respectively. At line 2, we see the operation is a reference. At line
3, V denotes the value of the bytecode statement in WALA IR.4 At line 4, T is the type of the
statement (here, the Connection class in java.sql). Lastly, there is a list of outgoing
dependency edges. DD and CF at lines 7 and 8 denote that this node has a data dependency
edge and a control-flow edge, respectively, to the node with ID 166.

4Joana uses the intermediate representation from the T.J. Watson Libraries for Analysis (WALA) (IBM 2006).
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5.2.2 Representing Programs as ASTs

We generated the ASTs for the programs analyzed by CBMC and JBMC. For C pro-
grams, we used Clang version 12.0.0 (The Clang Team 2021) to generate the AST. For
Java programs, we used ASTExtractor version 0.5 (Diamantopoulos 2020). Figure 6 shows
an example of an AST (Fig. 6b) generated for a piece of code (Fig. 6a). On line 1 in
Fig. 6b, we see the target variable which denotes the program label. The value [0,1]
denotes an incorrect result, and the value [1,0] denotes a correct result. On line 2, we
see the entire AST graph structure represented using edges. [0,1] represents an edge
from node 0 to node 1. On line 3, we see the Node Type for all the nodes present
in the AST. For example, node 0 is of the type CompilationUnit. On line 4, we
see the node content for all the nodes in the AST, which represents the actual content
from the code within each node. For node 0 there is no corresponding node content, but
for node 1, which is of the type ImportDeclaration, the node content is import
org.sosy lab.sv benchmarks.Verifier;.

Fig. 6 An example of the AST generated for a Java program in the JBMC dataset
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5.3 Data Preparation Routines

We now detail the specific ways we prepared the data for each model, as shown between
Columns 5 and 6 of Fig. 1.

5.3.1 Traditional Models

Hand-Engineered Features A feature vector �x can be constructed by asking experts to list
measurable properties of the program and SA report that might be indicative of a correct or
incorrect result. Each property can then be represented numerically by one or more elements
in �x. Indeed, researchers have used this approach to classify SA false positives in prior work
(Heckman 2007, 2009; Yüksel and Sözer 2013; Tripp et al. 2014; Utture et al. 2022; Kang
et al. 2022).

Once the feature representations are defined, a wealth of classifiers fθ and training algo-
rithms can be used to learn how to make predictions. Since feature vectors �x encode rich
knowledge about the task, classifiers fθ that compute simple combinations of these features
can be sufficient to train good models quickly. However, defining diverse features that cap-
ture all variations that might occur in different datasets is challenging and requires human
expertise.

For all programs, we extracted some common features from the source code, specifically
the number of path conditions and the number of function calls. These features have been
used by other researchers (Tripp et al. 2014; Utture et al. 2022; Kang et al. 2022). We then
used different methods for the rest of the feature vector depending on whether we were
generating data from FindSecBugs or CBMC/JBMC.

Since FindSecBugs reports include a wealth of information about the detected bug and
the code responsible, we primarily used these reports as the source of features. Specifically,
we adapted the approach by Tripp et al. (2014), who identified features to filter false cross-
site scripting (XSS) vulnerability reports for JavaScript programs. These features are: (1)
source identifier (e.g., document.location), (2) sink identifier (e.g., window.open),
(3) source line number, (4) sink line number, (5) source URL, (6) sink URL, (7) external
objects (e.g., flash), (8) total results, (9) number of steps (flow milestones comprising the
witness path), (10) analysis time, (11) rule name, and (12) severity. The first seven features
are lexical, the next three are quantitative, and last two are security-specific. These are in
addition to the common features noted above. Note that identifying these features requires
expertise in web application security and JavaScript. We dropped the features source URL,
sink URL and external objects as they do not appear in Java applications. We added two
features extracted from SA reports that might improve the detection of false positives: con-
fidence of the analyzer, which is designed to measure the likelihood of a report being a
true positive, and number of classes referred to in the error trace. We conjecture that longer
error traces with references to many classes might indicate imprecision in the analysis, thus
suggesting a higher chance of false positives.

For programs analyzed by CBMC and JBMC, we adopted Koc et al.’s approach for fea-
ture extraction, which they performed on the same SV-COMP datasets (Koc et al. 2021).
We converted the source code of C and Java programs to LLVM (LLVM Team 2020) and
WALA (IBM 2006) intermediate representations (IRs), respectively, and counted the occur-
rence of each type of instruction (46 LLVM instructions and 23 WALA IR instructions).
Furthermore, we counted the occurrences of different program constructs, such as loops
and method calls. Specifically, for JBMC, we collected 9 constructs: (1) number of ifs, (2)
number of variables, (3) number of functions defined, (4) number of calls, (5) number of
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loops, (6) number of variables with an array type, (7) number of variables with a composite
type, (8) number of variables with a fundamental type, and (9) number of lines. For CBMC,
we counted 13 contstructs: (1) number of variables, (2) number of ifs, (3) number of loops,
(4) number of function definitions, (5) number of function calls, (6) number variables with
a fundamental type, (7) number of variables with an array type, (8) number of variables
with a pointer type, (9) number of variables with a composite type, (10) number of com-
posite features,5 (11) number of lines, (12) number of load instructions, and (13) number of
store instructions. We present examples of how the HEF features are calculated from C and
Java programs in Figs. 7 and 8 respectively. In each figure, the first subfigure shows code
and the second subfigure shows the HEF extracted from that code. For example, Fig. 7b
shows a value of 3 for the feature numLoops, referring to the loops on lines 10, 14, and 20
respectivelty.

HEF can be regarded as the state-of-the-practice approach for this problem (Wang et al.
2018). However, as the input is often manually condensed into a discrete set of features
using human expertise, this approach often cannot comprehend the deep structure of the
source code being analyzed. Next, we explore how to represent program source code for
more complex ML approaches that can implicitly learn feature representations.

Bag ofWords One intuitive approach to learn from data is to transform it directly into a fea-
ture vector. For this, we take inspiration from text classification problems, where classifier
inputs are natural language documents and “Bag of Words” (BoW) features provide simple
yet effective representations (Goldberg 2017). BoW represents a document as a multiset of
the words found in the document, ignoring their order. The resulting feature vector �x for a
document has as many entries as words in the dictionary, and each entry indicates whether
a specific word exists in the document.

BoW has been used in the software engineering literature as an information retrieval
technique to solve problems such as duplicate report detection (Sureka and Jalote 2010),
bug localization (Lukins et al. 2010), and code search (Ye et al. 2016). Such applications
often use natural language descriptions provided by humans (developers or users). To our
knowledge, BoW has not been used to classify SA reports.

In our experiments, we used two variations of BoW. The first variation checks the occur-
rence of words, which leads to a binary feature vector representation, where the features
are the words. 1 means that the corresponding word is in a program, and 0 means it is not.
The second variation counts the frequency of words, which leads to an integer feature vec-
tor, where each integer indicates how many times the corresponding word occurs. In our
setting, “words” correspond to tokens extracted from program slices (for FindSecBugs) or
ASTs (for CBMC/JBMC) using data preparation routines introduced in Section 5.3.2 for
SA reports.

Similar to the HEF approach, once the feature vector representations are created, any
classification algorithm can be used for training. For a fixed classifier, training with BoW
often takes longer than learning with HEF because the feature space (i.e., the dictionary) is
usually significantly larger.

5Number of composite features include counting the number of variables, ifs, loops, functions defined,
functions called, loads, and stores.
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Fig. 7 An example of the HEF generated for a C program in the CBMC dataset

5.3.2 LSTM

To use LSTM, we need to transform program representations into sequences of tokens,
which we achieve with four sets of transformations. To the best of our knowledge, the effects
of such transformations have not been thoroughly studied in the past, although transforma-
tions similar to Tcln, Tans, and Taps were used by Koc et al. (2017). We further improved and
extended the transformations for mapping string literals and numbers with generic place-
holders, splitting paths of classes and methods, and removing certain nodes to improve the
effectiveness and generalizability.
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Fig. 8 An example of the HEF generated for a Java program in the JBMC dataset

We denote each transformation as Tx for some x so we can refer to it later in the paper.
We list the transformations in order of complexity, and a transformation is applied only after
applying all of the other, less complex transformations, as shown in Table 3. All but one of
these transformations were applied regardless of whether the data was a slice or an AST.
One transformation, Tcln, was applied only to slices.

Common Transformations

– Data Tokenization (Ttkn) We tokenize programs, converting the content of each graph
node into a sequence of tokens. On PDGs, we implemented our own tokenization rou-
tine, which performs some cleanup (e.g., removing the dot between a receiver and a
method call, or removing the preceding L from class references in bytecode). We extract
tokens from paths of classes and methods by splitting them by ‘.’ or ‘/’. For CBMC we
use Clang version 12.0.0 to tokenize the programs, while for JBMC we use the javalang
Python library (Thunes 2020).

– Abstracting Numbers and String Literals (Tans) These transformations replace num-
bers and string literals that appear in a program slice or AST with abstract values. We
hypothesize that these transformations will make learning more effective by reducing
the vocabulary of a given dataset and will help us to train more generalizable models.
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Table 3 Preparations, their names, and the datasets to which they were applied. Note that the * in HEF-*
denotes the specific model trained, which are enumerated in Section 5.1

Applied preparations Approach name Datasets

Hand-engineered feature extraction HEF-* OWASP, ICST CBMC, JBMC

Occurrence feature vector BoW-Occ

Frequency feature vector BoW-Freq

Tcln LSTM-Raw OWASP, ICST

Tcln + Tans LSTM-ANS

Tcln + Tans + Taps LSTM-APS

Tcln + Tans + Taps + Text LSTM-Ext

Kind, operation, and type node vector GGNN-KOT

KOT + an extracted item GGNN-KOTI

Node Encoding GGNN-Enc

No preparation LSTM-Raw CBMC, JBMC

Tans LSTM-ANS

Tans + Taps LSTM-APS

Tans + Taps + Text LSTM-Ext

Node Type GGNN-T

Node type + first N node content tokens GGNN-NT

Node type + node content word encoding GGNN-EncT

First, two digit numbers are replaced with N2, three digit numbers with N3, and num-
bers with four or more digit with N4+. We apply similar transformations for negative
numbers and numbers in scientific notation. Next, we extract the list of string literals
and replace each with the token STR followed by a unique number. For example, the
first string literal in the list will be replaced with STR1.

– Abstracting Program-specific Words (Taps) Many programmers use a common, small
set of words as identifiers, e.g., i, j, and counter are often used as integer variable
identifiers. We expect that such commonplace identifiers are also helpful for our learn-
ing task. On the other hand, programmers might use identifiers that are program- or
domain-specific, and hence do not commonly appear in other programs. Learning these
identifiers may not be useful for classifying SA reports in other programs. Therefore,
Taps abstracts away certain words from the dataset that occur less frequently, or that
only occur in a single program, by replacing them with phrase UNK. Similar to Tans,
these transformations may improve the effectiveness by reducing the vocabulary size
and generalizability via abstractions.

– Extracting English Words From Identifiers (Text) Many identifiers are composed of mul-
tiple English words. For example, the getFilePath method from the Java standard
library consists of three English words: get, File, and Path. To make our models
more generalizable and to reduce the vocabulary size, we split any camelCase or
snake case identifiers into their constituent words.

Slice-Specific Transformation

– Data Cleansing (Tcln) This set of transformations removes certain PDG nodes and
performs basic tokenization. First, the transformations remove nodes of certain kinds
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(i.e., formal in, formal out, actual in, actual out), or whose value fields
contain any of the phrases: many2many, UNIQ, 〈init〉, immutable, fake,
exception , or whose class loader is Primordial, which means this class is not part

of the program’s source code. These nodes are removed because they do not provide
useful information for learning. Some of them do not even exhibit anything from the
actual content of programs, but rather they are in the PDG to satisfy static single assign-
ment form.6 For instance, the nodes with type NORM and operation compound do
not have bytecode instructions from the program in their value field (only the phrase
many2many). We do not perform this operation for CBMC and JBMC as we create
ASTs for these tools and ASTs contain no redundant information.

5.3.3 GGNN

To adapt GGNNs to our problem, we explore several different node representations. We
group the representations based on what type of information from the respective node (PDG
or AST) we encode.

Enumerated Fields only (KOT/T) As the first representation, we only use enumerated fields.
These are fields whose potential values are taken from a relatively limited set of potential values.
For PDGs, these include the Kind, Operation, and Type fields of the graph nodes (KOT).
For the example node in Fig. 5, the KOT node representation is Vrep =[EXPR, reference,
Ljava/sql/Connection]. In ASTs, we only use the Type (T) fields of the graph
nodes. For the example AST in Fig. 6b, for the first node, the node representation is Vrep =
[Encoder(Node Type[0])] i.e., [Encoder(CompilationUnit)], where Encoder
is used to Encode Node Type features using an ordinal encoding scheme. We refer to this
encoding as T for PDGs and ASTs, respectively.

Enumerated Fields and Abstraction of Content (KOTI/NT) In the second representation,
in addition to enumerated fields, we include some abstraction of the node’s contents. In
PDGs, we include one more item that usually comes from the Value field of the PDG node
depending on the Operation field. For example, if the operation is call, or entry, or
exit, we extract the identifier of the method that appears in the statement. This represen-
tation is called KOTI. The KOTI representation for the PDG node in Fig. 5 is Vrep =[EXPR,
reference, Ljava/sql/Connection, object] (object is the abstraction of the
extracted item com.mangrove.utils.DBHelper.conn, meaning that the reference
is for an object).

For ASTs, in addition to the Type field, we tokenize and encode the tokens derived from
the NodeContent field of the AST for a particular node. This is called the NT represen-
tation, with the N attribute in the name being the number of tokens being considered for

each node. The operation can be represented as Vrep = ET ++
N∑

i=0
Encode(xi), where ++,

� are the concatenation operations and xi represent tokens for a particular node’s content.
transformations (ANS, APS, EXT) as aforementioned in the LSTM section. If a particular
node has k tokens, where k < N , we concatenate [−1] ∗ N − k times to Vrep , thus ensur-
ing a constant size of N+1 for node representation.7 For the example AST in Fig. 6b, for

6A property of the representation which requires that each variable is assigned exactly once, and every
variable is defined before it is used (Rosen et al. 1988).
7[-1] here refers to an array with a single -1 element, if N = 3 and k = 1 then [-1, -1]).
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the first node the Node Content is empty, so the node representation with N = 2 is Vrep =
[Encoder(Node Type[0]), −1 , −1], whereas for the node with the Node Content
as “public static” the node representation is Vrep = [Encoder(Node Type[0]),
LabelEncoder(["public"]), LabelEncoder(["static])].

Enumerated Fields and Encoding of All Node Content (Enc/EncT) In the third represen-
tation, we use word embeddings to compute a vector representation that accounts for the
entire content of each node. In PDGs, this content is the bytecode in the Value field (which
has an arbitrary number of words). To achieve this encoding, we first perform pre-training
using a bigger, unlabeled dataset (created using tokens made during the LSTM step) to learn
embedding vectors that capture more generic aspects of the words in the dictionary using
the word2vec model (Mikolov et al. 2013; Goldberg and Levy 2014). Then we take the
average of the embedding vectors of the words that appear in the Value field as its repre-
sentation, EV . Finally, we create a node vector by concatenating EV with the embedding
vectors of Kind, Operation, and type, i.e., Vrep = EK ++ EO ++ ET ++ EV where ++
is the concatenation operation.

For ASTs, we compute a vector representation (EV ) for each node using word embed-
dings from a word2vec model (Mikolov et al. 2013; Goldberg and Levy 2014) for all the
tokens present in that node’s content NodeContent. The operation can be represented as

EV = 1
N

N∑

i=0
Word2V ec(xi), where � is the addition operation and xi represent tokens

for a particular node’s content. We create the final node vector Vrep by concatenating EV

with the embedding vectors of type, i.e., Vrep = ET ++ EV , where ++ is the concatenation
operation.

6 Experimental Setup

In this section, we discuss our experimental setup, including the variations of ML algorithms
we compared, and how we divide datasets into training and test sets to mimic two different
usage scenarios.

Variations of Machine Learning Algorithms We compared the three families of ML
approaches described in Section 5. We split the traditional models into two categories based
on whether we represented the input data as HEF or BoW (hereafter, we broadly refer to
four categories of models: HEF, BoW, LSTM, and GGNN). For learning with HEF, we
experimented with 9 classification algorithms: Naı̈ve Bayes, Bayesian Network, Decision
Tree (J48), Random Forest, Multi-layer Perceptron (MLP), K*, OneR, ZeroR, and support
vector machines, with the features described in Section 5.3.1. We used the WEKA (Eibe
et al. 2016) implementations of these algorithms.

For traditional models learning on BoW, RNN models, and GNN models, we experi-
mented with the variations described in Sections 5.3.1, 5.3.2, and 5.3.3. Table 3 lists these
variations with their names and the data preparation applied for them. For example, the
approach LSTM-Raw on the OWASP and ICST datasets uses only the Tcln transformation
alone, while LSTM-Ext uses all four transformations. For BoW, we only used Decision-
Tree (J48) based on its good performance on HEF representations. For BoW and HEF, we
also used the AutoML package (AutoML 2022) for hyper-parameter tuning. We adapted
the LSTM implementation designed by Carrier and Cho (2018) by modifying the input
layer to accept our data and changing the optimization function from ADADELTA (Zeiler
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2012) to Adam (Kingma and Adam 2014), we do this to improve model performance
on our classification tasks. We also extended the GGNN implementation from Microsoft
Research (Microsoft 2019) by modifying the input layer and changing the output layer to
return classifications rather than probabilities.

As shown in Table 3, for OWASP and ICST datasets, we used the GGNN-KOT, GGNN-
KOTI, and GGNN-Enc algorithms. For the CBMC and JBMC datasets we used the GGNN-
T, GGNN-NT and GGNN-EncT algorithms. LSTM, BoW as well as the HEF approaches
were common for all the datasets.

Application Scenarios In practice, we envision two scenarios for using ML to classify false
positives. First, developers might continuously run static analysis tools on the same set of
programs as those programs evolve over time. For example, a group of developers might use
static analysis as they develop their code. In this scenario, the models might learn signals
that specifically appear in those programs, certain identifiers, API usage, etc. To mimic this
scenario, we divide the OWASP and ICST datasets randomly into training and test sets.
Thus, both training and test sets will have samples from each program in the dataset. We
refer to the ICST random split dataset as ICST-Rand for short.

Second, developers might want to deploy static analysis on a new subject program. In this
scenario, the training would be performed on one set of programs, and the learned model
would be applied to another. To mimic this scenario, we divide the programs randomly
so that a collection of programs forms the training set and the remaining ones form the
test set. To our knowledge, this scenario has not been studied in the literature for the SA
report classification problem. Note that the OWASP dataset is not appropriate for the second
scenario as all the programs in the dataset were developed by same people and hence share
many common properties such as variable names, length, and API usage. We refer to the
ICST program-wise split dataset as ICST-PW for short. The CBMC and JBMC datasets fit
into the second scenario. Since each program appears once in these datasets, the training
and the test set of programs are mutually exclusive.

Training Configuration Table 4 shows the training configuration for our datasets. For both
scenarios, we performed 5-fold cross-validation, i.e., 5 random splits for the first scenario
and 5 program-wise splits for the second scenario, by dividing the dataset into 5 subsets. We
use 4 subsets for training and 1 subset for testing, then rotate such that each subset is used
as the test set once. Furthermore, we repeat each execution 5 times with different random
seeds (1234, 3252, 5827, 7421, 9876). The purpose of these many repetitions is to evaluate
whether the results are consistent (see Section 7.3).

LSTM and GGNN are trained using an iterative algorithm that requires users to pro-
vide a stopping criterion. We set a timeout of 5 hours and ended training before the timeout
if there was no accuracy improvement for a certain number of epochs; this cut-off epoch
value is known as the epoch patience. For both the OWASP and ICST datasets, we set
the epoch patience to 100 for GGNN and 20 for LSTM. For the CBMC dataset, we set
the epoch patience to 150 and 100 for GGNN and LSTM. For the JBMC dataset, we
set the epoch patience to 100 and 50 for GGNN and LSTM. For LSTM, we conducted
small-scale preliminary experiments of 15 epochs with LSTM-Ext to determine the word
embedding dimension for tokens and batch size. We tested 4, 8, 12, 16, 20, and 50 for the
word embedding dimension and 1, 2, 4, 8, 16, and 32 for the batch size. We observed that
word embedding dimension 16 and batch size 12 led to the highest test accuracy for CBMC
and JBMC benchmarks. For the FindSecBugs benchmarks (OWASP, ICST-Rand, and ICST-
PW), word embedding dimension 8 and batch size 8 performed best in the preliminary
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Table 4 The training configuration for each dataset

Datasets # splits # seeds # algorithms # models

OWASP, ICST-Rand, ICST-PW 5 5 18 1350

CBMC, JBMC 5 5 20 1000

Total unique values 23 2350

experiments. We use the Adam (Kingma and Adam 2014) optimizer and hyperbolic tangent
function (tanh) as the activation function for the LSTM and GNN experiments. We used the
embedding dimension of 12 (size of word2vec embeddings) for the pre-training of GGNN-
Enc. We use dimension size 1 for encoding Tokens in GGNN-NT, as we use a simple label
encoder to encode the tokens. We choose the value for N variable based on the minimum
and maximum number of tokens per node in the datasets, we therefore choose 5, 8, and 16
for CBMC and 1, 2, and 5 for JBMC. We use Gated Recurrent Unit (GRU) (Cho et al. 2014)
as graph cells and tanh as the graph RNN activation function for the GNN experiments.

Metrics To evaluate the efficiency of the ML algorithms in terms of time, we use the train-
ing time and number of epochs. After loading a learned model into memory, the time to test
a data point is negligible (around a second) for all ML algorithms. To evaluate effectiveness,
we use precision, recall, and accuracy as follows:

Precision(P ) = # of correctly classified true positives

# of samples classified as true positive

Recall(R) = # of correctly classified true positives

# of true positives in dataset

Accuracy(A) = # of correctly classified samples

# of all samples, i.e., size of test set

Accuracy is a good indicator of effectiveness for our study because there is no trivial
way to achieve high accuracy if there is an even distribution of samples for each class.
Recall can be more useful when missing a true positive report is unacceptable (e.g., when
analyzing safety-critical systems). Precision can be more useful when the cost of reviewing
false positive report is unacceptable. All three metrics are computed using the test portion
of the datasets.

Research Questions With the above experimental setup, we conducted our study to answer
the following research questions:

– RQ1 (overall performance comparison): Which family of approaches perform better
overall?

– RQ2 (effect of data preparation): What is the effect of data preparation on
performance?

– RQ3 (variability analysis): What is the variability in the results?
– RQ4 (further interpreting the results): How do the approaches differ in what they

learn?

Experiments on the datasets corresponding to FindSecBugs results were run on a 64-bit
Linux (version 3.10.0-693.17.1.el7) VM running on 12-core Intel Xeon E312xx 2.4GHz
(Sandy Bridge) processor and 262GB RAM. Experiments on the CBMC and JBMC data
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were conducted on a server with 376GB of RAM and 2 Intel Xeon Gold 5218 16-core CPUs
@ 2.30GHz running Ubuntu 18.04.

Implementation The experiments were conducted using scripts written in Python, Java
and Bash. Most parts of the data preparation routines were developed using Python and
generic Python libraries. AST generation was done using Clang version 12.0.0 (The Clang
Team 2021) for CBMC and ASTExtractor version 0.5 (Diamantopoulos 2020) for JBMC.
Specifically, the LSTM data preparation was implemented in Python with 210 lines of code
(LoC) for CBMC and JBMC, and 183 LoC for FindSecBugs. The BoW data preparation
was implemented in Python with 80 LoC for all the target tools. The GGNN data preparation
was implemented in Python with 512 LoC for CBMC, 290 LoC for JBMC, and 560 LoC for
FindSecBugs. The HEF and BoW models were developed using WEKA (Eibe et al. 2016);
we used the WEKA GUI for tuning these models. The LSTM architecture was developed
using Python 2.7 along with the Theano library (Theano Development Team 2016) (651
LoC), while the GGNN model architecture was developed based on an implementation by
Microsoft Research (2019) using Python 3 and the Tensorflow library (Abadi et al. 2015)
(795 LoC). More details about how each specific process was automated are present in our
replication repository at https://bitbucket.org/SaiArrow/emse-replication-package/.

7 Analysis of Results

As seen in Table 4, we trained 2 350 SA report classification models in total. The summary
of the results can be found in Tables 5 and 6, as the median and semi-interquartile range
(SIQR) of 25 runs. We report median and SIQR because we do not have any hypothesis
about the underlying distribution of the data. Note that, for HEF, we list the four algorithms
that had the best accuracy: K*, J48, RandomForest, and MLP. We now answer each RQ.

7.1 RQ1: Overall Performance Comparison

In this section, we analyze the overall performance of four main learning approaches using
the accuracy metric. The trends we discuss here also hold for the recall and precision
metrics.

In Table 5, we separate high performing approaches from others with a dashed line at
points where there is a large gap in accuracy. Overall, LSTM and GGNN based approaches
consistently outperform other models in accuracy. The deep learning approaches (LSTM
and GGNN) classify false positives more accurately than HEF and BoW, at the cost of
longer training times. The gap between LSTM and GGNN and other approaches is larger in
the second application scenario (i.e, ICST-PW), suggesting that the hidden representations
learned generalize across programs better than HEF and BoW features. Next, we analyze
the results for each dataset.

For the OWASP dataset, all LSTM approaches achieve above 98% for recall, precision,
and accuracy metrics. BoW approaches are close, achieving about 97% accuracy. The HEF
approaches, however, are all below the dashed line, with below 80% accuracy. We conjec-
ture that the features used by HEF do not adequately capture the symptoms of false (or true)
positive reports (see Section 7.4). The GGNN variations have a large difference in accuracy.
GGNN-Enc achieves 94%, while the other two variations achieve around 80% accuracy.
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Table 5 Test recall, test precision, test accuracy and train accuracy results for the approaches in Table 3 and
four most accurate algorithms for HEF, sorted by test accuracy. Numbers in bigger font are median of 25
runs, and numbers in smaller font semi-interquartile range (SIQR). The dashed lines separate the approaches
that have high accuracy from others at a point where there is a relatively large gap
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Table 5 (continued)

This suggests that for the OWASP dataset, the values of the PDG nodes, i.e., the textual con-
tent of the programs, carry useful signals to be learned during training. This also explains
the outstanding performance of the BoW and LSTM approaches, as they mainly use this
textual content in training.

For the 2 ICST dataset splits (ICST-Rand and ICST-PW), we suspect that the models
overfit due to a comparatively large difference between train and test accuracy. This is
unsurprising as the ICST dataset has only 400 datapoints. We observe that the ICST-PW
experiments seems to show a lot of overfitting, which is again expected due to the difficulty
of the application scenario. We further expand on this in Section 7.5. Our observation for
the 2 ICST benchmarks are as follows: For the ICST-Rand dataset, two LSTM approaches
achieve close to 90% accuracy, followed by BoW approaches at around 86%. GGNN and
HEF approaches achieve around 80% accuracy. This result suggests that the ICST-Rand
dataset contains more relevant features the HEF approaches can take advantage of, and we
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Table 6 Number of epochs and
training times for the LSTM and
GGNN approaches. Median and
SIQR values are shown as in
Table 5

conjecture that the overall accuracy of the other three algorithms dropped because of the
larger programs and vocabulary in this dataset. Table 7 shows the dictionary sizes for the
LSTM approaches, and Table 8 shows the length of samples for the LSTM approaches (the
normal font is the maximum while the smaller font is the mean). Dictionary size refers to the
entire vocabulary of unique tokens present in the dataset, whereas length of samples refers
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Table 7 Dictionary sizes for the
LSTM approaches Approach Dictionary size

OWASP ICST CBMC JBMC

LSTM-Raw 333 13 237 13 503 942

LSTM-ANS 284 9 724 8 420 842

LSTM-APS 284 9 666 4 053 384

LSTM-Ext 251 4 730 3 404 381

to the length of the token sequence created from the routines mentioned in Section 5.3.2.
As expected, the dictionary gets smaller while the samples get larger as we apply more data
preparation. For GGNN on the OWASP dataset, the number of nodes is 24 on average and
82 at most, the number of edges is 47 on average and 174 at most. The ICST dataset is sig-
nificantly larger both in dictionary size and sample lengths, resulting in 1 880 average to 16
479 maximum nodes, and 6 411 average to 146 444 maximum edges.

For the ICST-PW dataset, all accuracy results except LSTM-Ext are below 80%. Recall
that this split was created for the second application scenario where training is performed
using one set of programs and testing is done using others. We observe the neural networks
(i.e., LSTM and GGNN) still produce reasonable results, while the results of HEF and BoW
dropped significantly. This suggests that neither the hand-engineered features nor the textual
content of the programs are adequate for the second application scenario as they are not
learning any structural information from the programs.

Next, we observe that both HEF and BoW are very efficient. All their variations complete
training in less than a minute for all datasets, while the LSTM and GGNN approaches run
for hours for the ICST-Rand and ICST-PW datasets (Table 6). This is mainly due to the
large number of parameters being optimized in LSTM and GGNN. However for most of the
dataset and scenarios, these neural network approaches tend to achieve the highest accuracy.

For the CBMC and JBMC datasets, the LSTM and GGNN approaches typically achieve
high accuracy compared to the other approaches. The GGNN-NT approach achieves the
highest accuracy in both cases with N = 16 and N = 5 for CBMC and JBMC, respec-
tively. However, certain GGNN approaches also achieve relatively low accuracy for both
datasets compared to other ML approaches. For example, GGNN-T achieved the lowest
accuracy and the third-lowest accuracy in CBMC and JBMC, respectively. This emphasizes
the importance of data preparation for GGNN. The LSTM approaches tend to perform bet-
ter than HEF and BoW, suggesting that neither the hand-engineered features nor the textual

Table 8 Sample lengths for the LSTM approaches. Numbers in the normal font are the maximum and in the
smaller font are the mean
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content of the programs are adequate for these application scenarios. This is consistent with
what we have seen with results for the previous datasets.

Lastly, note that the results on the OWASP dataset (Table 5) are directly comparable
with the results reported by Koc et al. (2017), which report 85% and 90% accuracy for
program slice and control-flow graph representations, respectively. In the current paper, we
only experimented with program slices as they are a precise summarization of the programs.
With the same dataset, our LSTM-Ext approach, which does not learn from any program-
specific tokens, achieves 99.57% accuracy. Therefore, we conjecture these improvements
are due to the better and more precise data preparation routines we perform.

7.2 RQ2: Effect of Data Preparation

Next, we analyze the effect of different data preparation techniques for the ML approaches.
We found LSTM-Ext produced the overall best accuracy results for the OWASP, ICST-Rand,
and ICST-PW datasets. The different node representations of GGNN present tradeoffs, while
the BoW variations produced similar results. GGNN-NT produced the best overall best
accuracy results for CBMC and JBMC, with the different LSTM data preparation techniques
just behind.

In LSTM, we have introduced four code transformation routines. LSTM-Raw achieves
100% accuracy on the OWASP dataset. This is because LSTM-Raw performs only basic data
cleansing and tokenization, with no abstraction for variable, method, and class identifiers.
Many programs in the OWASP dataset have variables named “safe,” “unsafe,” “tainted,”
etc., giving away the answer to the classification task. On the other hand, the ICST-
PW dataset benefits from more transformation routines that perform abstraction and word
extraction. LSTM-Ext outperformed LSTM-Raw by 5.33% in accuracy for the ICST-PW
dataset. For the CBMC and JBMC datasets, we see that data preparation routines improve
the accuracy of LSTM albeit by a rather small margin (less than 1.5%). For the first appli-
cation scenario, LSTM-Raw has the best results but for the second application scenario
LSTM-APS performs better on average.

We also experimented with three node representation techniques for GGNN as mentioned
in Section 5.3.3. For the OWASP dataset, we observe a significant improvement in accuracy
from 78% with GGNN-KOT to 94% with GGNN-Enc. This suggests that very basic struc-
tural information from the OWASP programs (i.e., the kind, operation, and type information
included in GGNN-KOT) carries limited signal about true and false positives, while the
textual information included in GGNN-Enc carries more signal, leading to a large improve-
ment. This trend, however, is not preserved on the ICST datasets. All GGNN variations
(GGNN-KOT, GGNN-KOTI, and GGNN-Enc) performed similarly with 83.56%, 84.21%,
and 82.19% accuracy, respectively, on the ICST-Rand, and 74%, 72%, and 74.67% accuracy
on the ICST-PW datasets. Overall, we think the GGNN trends for the ICST benchmarks
are not clear partly because of the distribution of data such as sample lengths, dictionary
and dataset sizes (Tables 2, 7 and 8). Moreover, the information encoded in the GGNN-KOT
and GGNN-KOTI approaches is very limited whereas it might be too condensed (aggre-
gated) in GGNN-Enc (taking the average over the embeddings of all tokens that appear in
the statement), making the training data harder to learn.

We used slightly different node representations and we also used Abstract Syntax Trees
(ASTs) for representing GGNN in the CBMC and JBMC datasets. In these datasets,
we observe overall improved accuracy for the GGNN-NT approach over other GGNN
approaches, which signifies that encoding the node content as tokens is useful information.
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We see an improvement to 83.80% for GGNN-NT-16 as compared to 76.20% for GGNN-
EncT and 75.80% for GGNN-T when using the CBMC dataset. For the JBMC dataset,
we observe a high test accuracy of 80.15% for GGNN-NT-5 as compared to the 73.95%
and 73.00% test accuracy for GGNN-EncT and GGNN-T respectivelyt. Also the compara-
ble accuracy of GGNN-EncT and GGNN-T (76.20% and 75.80% for CBMC and 73.95%
and 73.00% for JBMC) might indicate that word2vec embeddings provide some but not
much useful information for classification, as the only difference between GGNN-EncT
and GGNN-T techniques are the additional embeddings in GGNN-EncT. Since GGNN-NT
approaches also achieve the highest accuracy for the CBMC and JBMC datasets, it seems
that encoding ASTs in general might be useful for learning structural information from the
programs for static analysis.

As seen in Table 5, BoW-Occ and BoW-Freq had similar accuracy in general. The largest
difference in the test accuracy is 85.53% and 87.14% for BoW-Occ and BoW-Freq, respec-
tively, on the ICST-Rand dataset. This result suggests that checking the presence of a word
is almost as useful as counting its occurrences.

7.3 RQ3: Variability Analysis

In this section, we analyze the variance in the recall, precision, and accuracy results using
the semi-interquartile range (SIQR) values given in the smaller font in Table 5. Overall,
variance was quite different between datasets, and even between different preparations of
the same dataset, indicating the different ability of each approach to consistently capture
the underlying trend of the datasets. Note that, unlike other algorithms, J48 and K* deter-
ministically produce the same models when trained on the same training set. The variance
observed for J48 and K* is only due to the different splits of the same dataset.

On the OWASP dataset, all approaches have little variance, except for a 7% SIQR for the
recall value of HEF-MLP.

On the ICST-Rand dataset, SIQR values are relatively higher for all approaches but still
under 4% for many of the high performing approaches. The BoW-Freq approach has the
minimum variance for recall, precision, and accuracy. The LSTM-ANS and LSTM-Ext follow
this minimum variance result, and the HEF-based approaches lead to the highest variance
overall.

On the ICST-PW dataset, the variance is even larger. For recall in particular, we observe
SIQR values around 30% with some of the HEF, LSTM, and GGNN approaches. The best
performing two LSTM approaches, LSTM-Ext and LSTM-APS, have less than 4% difference
between quartiles in accuracy. We conjecture this is because the accuracy value directly
relates to the loss function being optimized (minimized), while recall and precision are
indirectly related. Also applying more data preparation for LSTM leads to a smaller variance
for all the three metrics for the ICST-PW dataset.

On the CBMC dataset, all approaches have little variance.
Lastly, on the JBMC dataset, the variances are relatively high compared to CBMC, espe-

cially for some of the LSTM approaches. However, we again observe that applying more
data preparation for LSTM leads to a smaller variance for all the metrics for the JBMC
dataset. The overall best two approaches for JBMC, GGNN-NT-5 and GGNN-NT-2 have a
SIQR of less than 4% in accuracy. The BoW and HEF approaches have an SIQR of less than
3% in accuracy, except for the HEF-RandomForest approach which seems to be an outlier.

We also compare variations in difference between training and test accuracy for the dif-
ferent datasets. For the OWASP we observe little difference between training and test data,
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thereby indicating that all the approaches are able to generalize to some extent for this
dataset.

For the ICST-Rand dataset the difference between training and test accuracy varies rela-
tively more than the OWASP dataset. We observe that the two approaches with the highest
variation in accuracy are HEF and BoW. We hypothesize that this could be due to lack of
deep structural and sequence information.

We observe the biggest difference between training and test data among all the bench-
marks for the ICST-PW dataset. We believe this could be due to the application scenario,
since we the program-wise split could cause algorithms to overfit on the training data (i.e,
similar programs with different labels would be always classified as the program in training
data, as the model parameters have been tuned for that).

For the CBMC and the JBMC datasets, we observe that the difference for the HEF and
BoW approach is much larger than that for the neural network approaches. This variability
is similar to the one we observed for the ICST-Rand dataset and reaffirms our hypothesis
that it could be due to the lack of structural and sequence information.

7.4 RQ4: Further Interpreting the Results

To draw more insights on the above results, we further analyze four representative varia-
tions, one in each family of approaches. We chose HEF-J48, BoW-Freq, LSTM-Ext, and
GGNN-KOT (GGNN-NT for CBMC/JBMC) because these instances generally produce the
best results in their family. Overall, we find that despite achieving lower accuracy, HEF-
J48 and BoW-Freq still correctly classified reports that GGNN and LSTM were unable to,
indicating that an ensemble approach (late fusion algorithm) may be beneficial to maximize
accuracy.

Figure 9 shows Venn diagrams that illustrate the distribution of the correctly classified
reports, for these approaches with their overlaps (intersections) and differences (as the mean
for 5 models). For example, in Fig. 9a, the value 294 in the region covered by all four colors
means these reports were correctly classified by all four approaches, while the value 1.8 in
the blue only region mean these reports were correctly classified only by LSTM.

The ICST-Rand results in Fig. 9b show that 43 reports were correctly classified by all four
approaches, meaning these reports have symptoms that are detectable by all approaches. On
the other hand, 30.6 (41%) of the reports were misclassified by at least one approach.

The ICST-PW results in Fig. 9c show that only 20 reports were correctly classified by all
approaches, which is mostly due to the poor performance of the HEF-J48 and BoW-Freq.
The LSTM-Ext and GGNN-KOT can correctly classify about 10 more reports which were
misclassified both by the HEF-J48 and BoW-Freq. This suggests that the LSTM-Ext and
GGNN-KOT captured more generic signals that hold across programs.

The CBMC results in Fig. 9d show that 80 (47.9%) reports were correctly classified
by all the approaches, meaning that these reports have symptoms that are detectable by
all approaches. However a large portion of the reports (52.1%) were misclassified by at
least one approach. The JBMC results in Fig. 9e show that only 30.2 reports were correctly
classified by all approaches, which is mostly due to the fact that reports often classified
properly by LSTM-Ext and GGNN-NT approaches are misclassified by either HEF-J48 and
BoW-Freq.

Last, the overall results in Fig. 9 show that no single approach correctly classified a super-
set of any other approach, and therefore there is a potential for achieving better accuracy by
combining multiple approaches.
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Fig. 9 Venn diagrams of the number of correctly classified examples for HEF-J48, BoW-Freq, LSTM-Ext,
and GGNN-KOT/GGNN-NT approaches, average for 5 models trained for the OWASP (a), ICST-Rand (b),
ICST-PW (c), CBMC (d), and JBMC (e) datasets (474, 74, 80, 168, and 74 test samples respectively)

Figure 10a shows a sample program from the OWASP dataset to demonstrate the poten-
tial advantage of the LSTM-Ext. On line 2, the param variable receives a value from
request.getQueryString(). This value is tainted because it comes from the outside
source HttpServletRequest. The switch block on lines 7 to 16 controls the value
of the variable bar. Because switchTarget is assigned ‘B’ on line 4, bar always
receives the value "bob". On line 17, the variable sql is assigned to a string containing
bar, and then used as a parameter in the statement.executeUpdate(sql) call on
line 20. In this case, FindSecBugs overly approximates that the tainted value read into the
param variable might reach the executeUpdate statement, which would be a potential
SQL injection vulnerability, and thus generates a vulnerability warning. However, because
bar always receives the safe value "bob", this report is a false positive.

Among the four approaches we discuss here, this report was correctly classified only
by LSTM-Ext. To illustrate the reason, we show the different inputs of these approaches.
Figure 10b shows the sequential representation used by LSTM-Ext. HEF-J48 used the
following feature vector:

[[[rule namerule namerule name : SQL INJECT ION,

sink linesink linesink line : 19, sink identif iersink identif iersink identif ier : Statement .executeUpdate,

source linesource linesource line : 2, source identif iersource identif iersource identif ier : request .getQueryString,

f unctionsf unctionsf unctions : 4,witness lengthwitness lengthwitness length : 2,number bugsnumber bugsnumber bugs : 1, conditionsconditionsconditions : 1,

severityseverityseverity : 5, conf idenceconf idenceconf idence : High, timetimetime : 2, classes involvedclasses involvedclasses involved : 1]]]

Notice that this feature vector does not include any information about the string variable
guess, the switch block, or overall logic that exists in the program. Instead, it relies
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Fig. 10 An example program (simplified) from the OWASP dataset that was correctly classified only by
LSTM-Ext and the sequential representation used for LSTM-Ext

on correlations that might exist for the features above. For this example, such correlations
weigh more towards the true positive decision, thus lead to a misclassification.

On the other hand, the LSTM-Ext representation includes the program informa-
tion (Fig. 10b). For example, VAR 6 gets assigned to the return value of the
request.getQueryString method, and VAR 10 is defined as STR 1 . char At
(1) (STR 1 is the first string that appears in this program, i.e., "ABC"). We see the tokens
switch VAR 10 on line 3 corresponding to the switch statement. Then, we see string and
SQL operations through lines 4 to 7, followed by a PHI instruction on line 8. This sequential
representation helps LSTM-Ext to correctly classify the example as a false positive.

Last, BoW-Freq misclassified this example using the tokens in Fig. 10b without their
order. This suggests that the overall correlation of the tokens that appear in this slice does
not favor the false positive class. We believe that the correct classification by LSTM-Ext was
thus not due to the presence of certain tokens, but rather due to the sequential structure.

Figure 11a shows a sample program from the JBMC dataset to demonstrate another
potential advantage of the LSTM-Ext and GGN. On line 6, the variable int j can cause an
ArithmeticException when the denominator variable denom is set to 0. However the
JBMC tool fails to capture this violation and marks it safe, thereby creating a false positive
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Fig. 11 An example program (simplified) from the JBMC dataset that was correctly classified by LSTM-Ext
and GGN-2T

sample. Since the HEF approach depends on the specific summarized code features and
information that can be obtained from the static analysis report, it cannot detect the violation
as it requires contextual information. However as the LSTM-Ext has the entire sequence
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with contextual information as seen in Fig. 11b, it could detect the violation due to tokens
that denote that an integer N2, is divided by another integer denom. As LSTM can retain
information over long sequences it can make use of this information to detect the violation.
Similarly for the GGN-2T approach the violation can detected using the relationship formed
by the edges of the nodes denoting the variable and operation in the AST.

7.5 Threats to Validity

We identify various internal and external threats to the validity of our study.

Internal Threats One internal threat to validity is that we did not have any datasets on
which we compared the AST- and PDG-based representations. We do not view this threat as
major because the goal of this work was not to compare the two representations, but rather,
explore their viability as program representations. Additionally, we do not claim that the
representations we propose are the best for the given datasets.

Second, since we apply data preparation routines cumulatively, it is possible that
improved performance may be caused by the interaction between multiple routines that we
do not account for. Note that we do not claim that the steps we propose are optimal, just that
they are viable for training high-performance machine learning models.

Finally, it is possible that there are some confounding variables we are not aware of that
could impact our results. Kang, Aw, and Lo pointed out that in many studies, the ground
truth leaks into the test data through feature extraction (2022). We did not use any of the
features they identified as responsible for data leakage (i.e., warning context and defect
likelihood), and we further attempted to mitigate this threat by post-processing to remove
things like variable names that might give away the ground truths.

External Threats First, the datasets may not be representative. Indeed, the OWASP, CBMC,
and JBMC program sets are synthetic. Therefore, we collected the first real-world (ICST)
dataset for classifying SA results, consisting of 14 programs to increase the generalizability
of our results. Using a larger dataset would be challenging, since few datasets for static
analysis exist with known ground truths and manually classifying results is time-consuming.
We believe the mix of programs we chose, which includes programs of various sizes written
by various people, helps mitigate this threat.

Second, the configurations we chose specifically for CBMC and JBMC may not be rep-
resentative of real configurations. In order to train our models, a balanced dataset (i.e., a
dataset with significant amounts of both correct and incorrect results) was necessary. We
obtained configurations that gave a balanced dataset from previous work that used covering
arrays (Koc et al. 2021), and it is unlikely that a user would use these exact configura-
tions. This threatens the generality of our approach to real scenarios if the configurations
we selected do not resemble a typical user experience. It is well known that false positives
are a major barrier to the usage of analysis tools (Johnson et al. 2013), so we do not believe
our scenario and the requirement of a balanced dataset are unrealistic. One potential solu-
tion we chose not to adapt would be rebalancing the dataset. This would consist of using
the default configuration, rebalancing the training data via oversampling, and testing on
the original distribution. However, this approach would introduce an additional significant
threat. Recall that the default configurations of CBMC and JBMC are tuned to be sound
and precise, but often fail to terminate. If we kept the classifications from the default con-
figuration, and discarded non-terminations (since we only classify correct/incorrect and not
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terminated/non-terminated), all of the results in the test set would be labeled “correct” and
a naive classifier that classified everything as correct would achieve 100% accuracy.

Third, FindSecBugs, CBMC, and JBMC may not be representative of real-world static
analyzers. FindSecBugs performs information flow analysis and is specialized to find secu-
rity bugs, and CBMC and JBMC are both model checkers. There are various other forms of
static analysis that we do not study, and our results may not generalize to those. We tried
to mitigate this threat by ensuring the set of tools we used implemented different analysis
techniques and analyzed different languages.

Fourth, our ICST dataset consists of 400 data points which may not be large enough to
train neural networks with high confidence. We repeat the experiments using different ran-
dom seeds and data splits to analyze the variability that might be caused by having limited
data. However we still suspect that the models overfit due to the big difference between
train and test accuracy. However, none of the overall observations we make rely solely on
trends observed from the ICST benchmarks.

Finally, we ran our experiments between a virtual machine and server, which may affect
the training times. However, since these models would be trained offline and very rarely, we
are primarily interested in effectiveness of the approaches in this study.

8 Discussion

We now summarize our key insights and their implications for both researchers and
practitioners. The key implications of this work for researchers are as follows:

– More research on representing programs for learning is needed (RQ1,RQ2). In this
work, we experimented with various representations for programs, and we saw that
different representations provided different tradeoffs. For example, the graph repre-
sentation of ASTs outperformed the vector representation (i.e., GGNN outperformed
LSTM on CBMC and JBMC datasets). However, the same was not true for pro-
grams whose graph representation was a slice—LSTM outperformed GGNN on these
programs, despite the slice being designed to only contain useful information. More
research is warranted to understand the tradeoffs between these models.

– Different approaches provide different tradeoffs that need to be better understood
(RQ4). As shown in Fig. 9, in no circumstance did LSTM and GGNN completely
subsume traditional approaches. This indicates the potential utility of an ensemble
approach that combines neural networks and traditional models, and it also motivates
further research into the tradeoffs different models present.

The primary implication of this work for practitioners is:

– While ML-based filtering approaches may not be sound, they can increase productivity
with regard to the number of bugs fixed in a certain amount of time. In scenarios wherein
finding every bug is critical, ML approaches are not a good choice, as they can filter
out true results in addition to false results. However, if a practitioner’s goal is to fix as
many bugs as they can in a certain amount of time, ML classifiers can help optimize
this time by reducing the effective false positive rate. Taking the ICST dataset as an
example, which contained approximately the same number of true positives and false
positives, the maximum accuracy we were able to achieve was 89.33%. This means
that we can expect the model to misclassify about 43 reports out of the 400 total. Since
the precision and recall values were about the same, we can assume about half of these
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will be false positives misclassified as true, and the other half true bugs misclassified
as false. If the practitioner only manually classifies the results judged as true positives,
they would save half the total investigation time at the cost of approximately 21 missed
bugs.

9 RelatedWork

There are several threads of related work.

ICST 2019 The current paper extends our prior work (Koc et al. 2019) with two major
additions: more datasets and additional and improved ML approaches. Compared to our
previous work, which used the OWASP and ICST program set, we added the CBMC and
JBMC program set from the annual SV-COMP (Beyer 2018, 2019), as well as the ground
truth dataset obtained by running CBMC and JBMC on them. This allowed us to improve
our previous study and make more general findings by evaluating two different types of
static analysis. Further details about the datasets are presented in Section 4. We also signifi-
cantly extended our approach to learning. This work added ASTs for representing programs
from the CBMC and JBMC datasets in addition to the program slices used in the previous
work (details in Section 5.2). As such, we had to adapt all of our data preparation routines to
accomodate the new data. Specifically, we defined new features to be extracted for HEF rep-
resentations from the CBMC and JBMC datasets (details in Section 5.3.1). We also adapted
the transformations used to transform program representations into sequences of tokens for
the ASTs created from the CBMC and JBMC datasets (details in Section 5.3.2). We also
extended the GGNN implementation from Microsoft Research (2019) to use it with ASTs
created from the CBMC and JBMC datasets, and added new node representations for these
datasets to be used in the GGNN implementation (details in Section 5.3.3). Our findings
from the extended work were broadly the same as in the previous work, with more evidence
backing them. We still find that neural networks outperform but do not subsume traditional
approaches, and that data preparation is critical and warrants further study. An additional
extension of our work in this paper is the additional dimension of true and false negatives
in the CBMC and JBMC datasets. In our original work, the models only had to differentiate
between true and false positive results. Now, our correct class includes both true negatives
and positives, and our incorrect class includes both false negatives and positives. Our work
in this paper shows that ML models are still capable of this classification task.

False Positive Report Filtering Using ML To date, most research aimed at filtering false
positive SA reports has used hand-engineered features (Heckman 2007, 2009; Yüksel and
Sözer 2013; Tripp et al. 2014; Utture et al. 2022; Kang et al. 2022). For instance, Tripp
et al. (2014) identify 14 such features for false positive cross-site scripting reports gener-
ated for JavaScript programs. We evaluated this approach by adopting these 14 features for
Java programs, attempting to hew closely to the type of features used in the original work.
Utture et al. (2022) used random forests to prune imprecise call graphs. Their models are
trained on features extracted from the static call graph, while labels were obtained from the
dynamic call graph. Their approach was able to improve the precision of call graphs pro-
duced by WALA (IBM 2006), DOOP (Bravenboer and Yannis 2009), and Petablox (Naik
2020). Their approach focuses on achieving balance in a call graph, which, in practice,
means trying to prune mostly false positive edges but allowing for true positive edges to
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be pruned as well. Our approach and models are designed to evaluate the ability of mod-
els to prune only false positives while retaining true positives. Furthermore, in addition
to features from the bug reports themselves, our hand-engineered features include things
extracted from the source code. Koc et al. (2017) conducted a case study applying a recurrent
neural network approach to the synthetic OWASP benchmark. Although the results were
promising, the approach had not been applied to real-world programs. We extend and eval-
uate this approach with more precise program summarization and data preparation routines
using real-world programs. Zhou et al. (2019) developed a general graph neural network
based model for graph-level classification through learning on a rich set of code semantic
representations which they tested on four large open-source C projects: the Linux Kernel,
QEMU, Wireshark, and FFmpeg. Tanwar et al. (2020) developed a novel AI-based system
that uses ASTs created from the source code and an active feedback loop to identify and
bugs during source code development. They tested their approach on the Cisco codebase
for C and C++ programing language. Kharkar et al. (2022) developed a transformer-based
learning approach to identify false positive bug warnings, and they tested their approach on
a custom dataset consisting of warnings from Infer for various open source and proprietary
software projects. Raghothaman et al. (2018) build on an ML approach, Bayesian inference,
that additionally relies on direct feedback from human tool users. These works all focus on
a single learning approach on analyses targeting a single language, while our work uniquely
evaluates many different models on analyses for two languages. Furthermore, none of the
existing work in this line of research has studied the second application scenario we identify
for ML-assisted triage, which tries to generalize learning to new programs.

NLP Techniques Applied to Code Multiple researchers have successfully applied NLP
techniques to programs to tackle software engineering problems such as clone detec-
tion (White et al. 2016), API mining (Gu et al. 2016; Fowkes and Sutton 2016), variable
naming and renaming (Raychev et al. 2015; Allamanis et al. 2015), code suggestion and
completion (Tu et al. 2014; Nguyen et al. 2013; Raychev et al. 2014), and bug detec-
tion (Allamanis et al. 2017). Allamanis et al. (2018) conducted an extensive survey of such
research efforts. There has also been recent work using NLP techniques and deep learning
to develop and update comments based on existing code and any changes which occur (Gros
et al. 2020; Haque et al. 2020; Panthaplackel et al. 2020). Searching open-source repos-
itories to retrieve existing code snippets for a given user query is a key task in software
engineering. In recent years, there has been an increase of interest in using natural lan-
guage techniques for doing this code search, and some datasets for the same problem have
been published (Wang et al. 2020; Li et al. 2019; Wan et al. 2019). There has also been
research to develop unsupervised embeddings for software libraries, which can then be
used for any of the above mentioned tgiasks (Feng et al. 2020; Chen and Monperrus 2019;
Alon et al. 2019). However, none of these efforts addresses the problem of identifying and
distinguishing incorrect SA reports.

10 Conclusions and FutureWork

We presented an empirical study that evaluates three families of ML approaches—
traditional approaches, recurrent neural networks, and graph neural networks—to classify-
ing static analysis results from three tools—FindSecBugs, CBMC, and JBMC—as either
correct or incorrect. To adapt these approaches to this classification task, we introduced
new code transformations for preparing code as input to each ML approach. We used
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multiple datasets for evaluation: the OWASP and ICST datasets, consisting of classified
FindSecBugs reports; and the CBMC and JBMC datasets, consisting of verification results.
We also studied two application scenarios: one in which the approach is being used con-
tinually as software is developed, thereby having similar programs in the test and training
sets; and one in which the user applies the approach to new software and so has different
programs in the test and training sets.

The results of our experiments suggest that neural network approaches work better than
traditional approaches. The LSTM approach worked better for classifying false positives
emitted by the FindSecBugs tool, while GGNN worked better for classifying incorrect
results emitted by CBMC and JBMC. This may indicate that GGNNs are more suited for
learning on ASTs and LSTMs are more suited for learning on program slices. We eval-
uated two potenital usage scenarios, and found that the application scenario in which the
training set and test set contain different programs is more challenging. This was shown by
the lower accuracy on the CBMC and JBMC datasets compared to OWASP, as well as the
apparent degree of overfitting on the ICST-PW dataset as opposed to the ICST-Rand dataset.
However, in this application scenario, we observed that more detailed data preparation with
abstraction and word extraction leads to significant increases in accuracy. Finally, we eval-
uated both ASTs and program slices as input to ML models, and found that both are able
to effectively encode structural information, the former working better for GGNNs and the
latter for LSTMs.

In future work, we plan to explore a voting scheme that combines different ML
approaches to create an ensemble classifier that can achieve better accuracy. We also plan
on using different embeddings for either node representation or as input to recurrent neural
networks. We also plan to explore the configuration spaces of these tools, potentially inte-
grating configuration into the learning infrastructure, similarly to previous work (Koc et al.
2021).
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