
SATUNE: A Study-Driven Auto-Tuning Approach
for Configurable Software Verification Tools

Ugur Koc∗ Austin Mordahl† Shiyi Wei† Jeffrey S. Foster‡ Adam A. Porter∗
∗Department of Computer Science, University of Maryland, College Park, MD, USA

{ukoc, aporter}@cs.umd.edu
†Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA

{austin.mordahl, swei}@utdallas.edu
‡Department of Computer Science, Tufts University, Medford, MA, USA

jeffrey.foster@tufts.edu

Abstract—Many program verification tools can be customized
via run-time configuration options that trade off performance,
precision, and soundness. However, in practice, users often run
tools under their default configurations, because understanding
these tradeoffs requires significant expertise. In this paper,
we ask how well a single, default configuration can work in
general, and we propose SATUNE, a novel tool for automatically
configuring program verification tools for given target programs.
To answer our question, we gathered a dataset that runs four
well-known program verification tools against a range of C
and Java benchmarks, with results labeled as correct, incorrect,
or inconclusive (e.g., timeout). Examining the dataset, we find
there is generally no one-size-fits-all best configuration. Moreover,
a statistical analysis shows that many individual configuration
options do not have simple tradeoffs: they can be better or worse
depending on the program.

Motivated by these results, we developed SATUNE, which
constructs configurations using a meta-heuristic search. The
search is guided by a surrogate fitness function trained on
our dataset. We compare the performance of SATUNE to three
baselines: a single configuration with the most correct results
in our dataset; the most precise configuration followed by the
most correct configuration (if needed); and the most precise
configuration followed by random search (also if needed). We find
that SATUNE outperforms these approaches by completing more
correct tasks with high precision. In summary, our work shows
that good configurations for verification tools are not simple to
find, and SATUNE takes an important step towards automating
the process of finding them.

Index Terms—Empirical software engineering; software anal-
ysis; testing, verification, and validation.

I. INTRODUCTION

Static program verification tools are a promising approach
for reasoning about the correctness of software. Because the
algorithms that back such tools present various precision,
soundness, and performance1 tradeoffs [1]–[3], program ver-
ification tools often include a host of options for tuning the
analysis. However, deciding how to set these options can be
quite challenging, as it may require deep knowledge of the
analysis algorithms [2], [4]. Thus in practice, many users rely
on a default configuration recommended by developers for

1In this work, when we speak of “performance”, we are referring to the
quality of producing correct results; in other words, maximizing the number
of true positive and true negative results produced.

typical scenarios. Unfortunately, prior work suggests that the
tradeoffs among options depend on the features of the program
being analyzed [5]–[9].

In response to these challenges, several researchers have
explored ways to choose a program verifier, or configuration
of a verifier to best fit a target program [6], [10]–[15] and
have selectively applied settings of the analysis configuration
options [5], [8], [9], [16]. Other work aims to develop an
understanding of certain kinds of configuration options in
static analysis frameworks or tools [2], [3], [17]. To our
knowledge, the prior work has focused on relatively small and
specific configuration or tool spaces. As a result, the effects
of configurations on program verification tools is still poorly
understood, and it remains difficult to tune such tools.

In this paper, we aim to address this gap in two steps. First,
to better understand the configurability of program verification
tools, we perform an empirical study in which we construct
and analyze a dataset of runs of four popular tools on a
range of benchmarks. Second, driven by the results of the
empirical study, we propose SATUNE, a novel technique for
automatically tuning the large configuration spaces of software
verification tools.

Our empirical study examines four tools that participate in
the annual software verification competition (SV-COMP) [18]:
CBMC [19] and Symbiotic [20], [21] verify C/C++ programs,
and JBMC [22] and JayHorn [23] verify Java programs. We
created a ground-truth dataset by running sampled configura-
tions of the four tools on a subset of SV-COMP benchmarks.
Each of the 517748 tool–configuration–benchmark triples in
our dataset is labeled as either producing a correct, incorrect,
or inconclusive (e.g., timeout) result. We then analyzed the
data to answer two research questions. First, we ask whether,
for each tool, there exists a one-size-fits-all configuration that
produces a superset of complete, correct results (RQ1). We
found that even the most-correct-config—the configuration that
produces the most true positive and true negative results for a
tool—is unable to complete many verification tasks that other
configurations could. Second, we use statistical analysis to
investigate the impact of individual configuration options on
the tools’ performance and precision (RQ2). We found that for
each tool, at most half of the option settings have a statistically

330

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00038

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

87
61

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

significant effect on the number of correct or incorrect results
produced by a tool. In other words, many option settings do not
change the results much. We also found that the option settings
that do have significant effects increase the number of correct
results in some programs and decrease it in others, suggesting
their effects can vary greatly from program to program. (See
Section II for details of our empirical study.)

Overall, our study suggests that no single configuration is
sufficient for general use, and configurations may need to be
tuned to the target program. Thus, we propose SATUNE, a
novel technique that aims to find a good tool configuration for
a given target program. Because the tools’ configuration spaces
are very large and complex, SATUNE finds configurations
using a meta-heuristic search driven by a fitness function,
where the fitness of a configuration is its predicted likelihood
to terminate with a correct result on the target program. We
implement the fitness function as a machine learning model
trained on the dataset from the empirical study. One key
feature of SATUNE is that it is both tool- and language-
agnostic, as the approach only requires a labeled training
dataset, the ability to run a tool from the command line,
and the ability to process its output. (Section III describes
SATUNE.)

We evaluate SATUNE by comparing it against three base-
lines that simulate ways a user might tune a verification
tool: first, using the configuration most-correct-config that
produces the most correct results from our dataset; second,
using the configuration best-precision-config that is the most
precise (i.e., maximizes #corrects

#corrects+#incorrects) and, if it does not
complete, trying most-correct-config; and third, using best-
precision-config and, if it does not complete, using random
search. We found that, compared to these baselines, SATUNE
provides the best balance between precision and number
of complete results (RQ3). For example, in the best case,
SATUNE was able to analyze 169 (27%) more programs with
higher precision than any baseline. We also evaluated SATUNE
in terms of run time, and found that it was 2–4× faster than
random search and was comparable to the second baseline
(RQ4). (Section IV presents our evaluation of SATUNE.)

In summary, our results suggest there is no one-size-fits-
all best configuration for the studied program verification
tools, and that effects of individual configuration options can
vary greatly from program to program. Thus, we believe that
SATUNE takes an important first step toward automating the
process of finding good program verification tool configura-
tions.

We have made our dataset, results, and the implementation
of SATUNE publicly available at https://zenodo.org/record/
5218510.

II. EMPIRICAL STUDY OF CONFIGURABLE VERIFICATION
TOOLS

To better understand the configurability of program veri-
fication tools, we studied four popular tools to examine the
effects of both configurations as a whole and of individual
configuration options.

A. Study Setup
Table I lists the verification tools we used in our study.

We chose these tools because (1) they are among the best-
performing tools in SV-COMP, (2) they come with configura-
tion options that impact the tools’ performance and precision,
(3) they provide sufficient configuration option documentation
so we can understand what individual option settings do, and
(4) they target programs written in two widely-used program-
ming languages: CBMC and Symbiotic verify C programs, and
JBMC and JayHorn verify Java programs.

In our study, we focus on the configuration options that af-
fect analysis performance, soundness, and/or precision, instead
of those that format output or toggle specific checkers.

Column 3 in Table I shows the number of options we
use in each verification tool. For each option, we identified
its domain (i.e., the settings it can take on). In terms of
domain, there were three different types of options in these
verification tools. First, some options may be passed to the
tool alone as an argument; i.e., as boolean flags. Inherently, a
boolean flag option has two possible settings: {set, unset}. For
instance, CBMC has 11 boolean flag options, such as --partial-
loops, which allows CBMC to model paths that only partially
execute loops, rather than fully unwinding them [24]. Second,
options may have categorical settings. CBMC has 6 such
options, such as --mm, which specifies the memory model for
concurrent applications [19]. This option can take on any of the
following settings: {sc, tso, pso}. Finally, some options take
on numerical values. Due to the large number of settings, for
numerical options we use a set of representative values from
their domains. For instance, the --unwind option of CBMC
(which specifies the depth to which loops should be unwound)
accepts a positive integer; we considered the following values
for this option: {1, 5, 10, 20, 100}. We included all settings of
boolean and categorical options. Each specific combination of
option settings is a configuration. Column 4 shows the number
of possible configurations that can be created with the options
and settings that we use.

1) Configuration Sampling: The large number of options
for our subject tools makes it infeasible to study the tools’
behaviors under all configurations (column 4 in Table I).
Research on combinatorial interaction testing has shown that
sampling configuration spaces using covering arrays is an
effective way to explore the behavior of configurable soft-
ware [25], [26]. Furthermore, past research also indicates that
changes in the behavior of software tend to be caused by
interactions of only a few options [27]. We therefore create
a 3-way covering array, which is a list of configurations
that include all 3-way combinations of configuration option
settings [25], for each tool, using an existing covering array
generator [28]. Column 5 in Table I shows the number of
sample configurations, i.e., the sizes of the covering arrays.

2) Target Programs: All of our target programs are taken
from the SV-COMP competition [18]. To our knowledge, the
SV-COMP program set is the largest collection of verification
benchmarks for which the ground truths (i.e., whether the
benchmark is safe or unsafe according to some property)

331

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Subject verification tools.

Tool Target # of Config Sample Dataset
lang. options space size size size

CBMC 5.11 C 21 2.9 × 109 295 295,000
Symbiotic 6.1.0 C 16 9.8 × 105 82 54,940
JayHorn 0.6-a Java 12 7.5 × 106 256 94,208
JBMC 5.10 Java 27 7.2 × 1010 200 73,600

are known. Furthermore, this program set aggregates multiple
benchmarks from across the literature, increasing the gener-
ality of the conclusions we make. It consists of over 10,000
benchmark programs in C and Java. In our study, we selected
a subset on which we ran the verification tools with each
sampled configuration.

For the two Java tools, we used all 368 benchmark programs
from SV-COMP 2019. These Java programs are written with
assertions, and the verification tools check if these assertions
always hold. Among the 368 programs, 204 (55.4%) are
known to be unsafe. For C tools, the SV-COMP 2018 bench-
mark has 9,523 programs in total.2 We randomly selected
a subset of 1,000 programs that are subject to only one
verification check. Out of the 1,000 programs we selected,
there are 335 programs that are subject to concurrency safety
verification, 41 to memory safety verification, 65 to integer
overflow verification, 485 to reachability verification, and 74
to verification of termination. Among the 1,000 programs, 517
are known to be unsafe.

3) Dataset Collection: We executed each sampled config-
uration of the subject tools once on each benchmark task
to create the dataset for our study.3 In each execution, we
used a 1-minute timeout. For the purpose of studying the
configuration spaces, this timeout is sufficient because, based
on SV-COMP 2018 and 2019 results, 95%, 94%, 100%, and
85% of the conclusive runs took less than 1 minute for CBMC,
Symbiotic, JayHorn, and JBMC, respectively [29], [30]. We
say a verification run is conclusive if it outputs a judgement
that the target program is safe (verified) or unsafe (rejected by
the verifier). In total, we performed 517,748 verification runs.
The sizes of the datasets for each tool range from 54,940 to
295,000 runs (last columns of Table I).

All experiments were conducted on an Ubuntu 16.04LTS
machine with 24 Intel Xeon Silver 4116 CPUs @ 2.10GHz
and 144GB RAM.

4) Research Questions: Our study answers two research
questions:
• RQ1: Do the subject tools have any one-size-fits-all

configurations?
• RQ2: What is the impact of individual configuration

option settings on the tools’ results?
RQ1 deals with the behavior of configurations as a whole.

We used the dataset to determine whether any subject tool has

2SV-COMP 2019 data was not available when we started this research. The
benchmark set for C is mostly the same between 2018 and 2019.

3Symbiotic does not check concurrency safety. Thus, we did not run Sym-
biotic for the 335 programs that are subject to concurrency safety verification.

TABLE II: Results of the sample configurations.

Tool

of verification tasks (i.e., programs)

All Never
solved

Correct / Incorrect / Inconclusive
worst- most- best-

precision correct precision

CBMC 1000 42 524 / 456 / 20 635 / 262 / 103 426 / 1 / 573
Symbiotic 665 338 150 / 92 / 423 261 / 1 / 403 261 / 1 / 403
JayHorn 368 62 121 / 98 / 149 227 / 37 / 104 184 / 2 / 182
JBMC 368 2 159 / 204 / 5 331 / 0 / 37 331 / 0 / 37

a one-size-fits-all configuration, i.e., a configuration that can
complete all verification tasks that were completed by at least
one sampled configuration.

RQ2 focuses on the effects of individual configuration op-
tion settings. To address this research question, we aggregated
the number of correct and incorrect verification results for
each tool. We then performed a main effects screening analysis
using ANOVA [31]. In this analysis, we treat the configuration
options as cardinal or ordinal factors (i.e., independent vari-
ables) and the number of correct and incorrect results as the
responses (i.e., dependent variables). We create two models
for each tool, one for each response, using the least square
method. Each model shows the effect that each factor has on
the response along with standard error and the p-value. In our
analysis, we consider the factors with statistically significant
effects as those with p-value<0.05.

B. Study Results

1) RQ1: Do the subject tools have any one-size-fits-all
configurations?: Table II presents results for the subject tools.
Columns 2 and 3 show the total number of tasks to verify and
the number of tasks the subject tool could not complete within
the 1-minute timeout under any configuration. For each tool,
we identified the worst-precision-config, the most-correct-
config, and the best-precision-config. The worst-precision-
config is the configuration which had the lowest precision (i.e.,

#corrects
#corrects+#incorrects). The most-correct-config is the one which
classified the most programs correctly, and the best-precision-
config is the configuration that had the highest precision.
Columns 4, 5, and 6 in Table II show the number of correct /
incorrect / inconclusive results for the worst-precision-config,
most-correct-config, and best-precision-config, respectively.

We find that no tool has a single configuration that could
correctly verify all tasks other configurations did. Even the
most-correct-config could not correctly verify 10% to 32% of
the tasks that other configurations did.

For CBMC, there is a large variance in the behavior of
different configurations. The most-correct-config only com-
pleted 635 tasks (63.5%) correctly. However, in aggregate,
96% of the verification tasks could be completed correctly
by some configuration of CBMC. We observe similar results
for JayHorn. Its most-correct-config verified 227 (62%) tasks
correctly, yet 83% of the tasks were correctly verified by
some configuration. Furthermore, both configurations produce
many more incorrect results than the best-precision-config
For example, CBMC’s most-correct-config had 262 incorrect

332

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

1 int main() {
2 float x = 1.0f;
3 float x1 = x/2.5f;
4

5 while(x1 6=x) {
6 x = x1;
7 x1 = x/2.5f;
8 }
9

10 assert(x == 0);
11

12 return 0;
13 }

(a) P1 (safe)

1 #define N 1000000
2 int main() {
3 int i, a[N];
4 for (i=0; i<N; i++)
5 a[i] = 1;
6 for (i=0; i<N; i++)
7 a[i] = 2;
8 for (i=0; i<N; i++)
9 a[i] = 3;
10 for (i=0; i<N; i++)
11 assert(a[i] == 2);
12 return 0;
13 }

(b) P2 (unsafe)

Fig. 1: Simplified code examples from the SV-COMP 2018.

results compared to only 1 incorrect result using its best-
precision-config. Depending on the user’s requirements, this
may be an unacceptable tradeoff.

The most-correct-configs for Symbiotic and JBMC are more
promising. Symbiotic’s most-correct-config (which was also
its best-precision-config) correctly verified 39% of tasks, and
49% of tasks that could be correctly completed by any
configuration. JBMC also had the same best-precision-config
and most-correct-config, which happened to be its default used
in SV-COMP. This configuration completed 331 (90%) tasks
correctly, with 0 incorrect results. JBMC could complete all
but 2 (i.e., 99.5%) tasks correctly with some configuration.

The above findings suggest that even for the tools with
better single configurations, there is still significant room for
improvement if the right configuration can be identified for a
given verification task.

2) RQ2: What is the impact of individual configuration
option settings on the tools’ results?: The results of the main
effects screening analysis are summarized in Table III. Column
2 lists the option settings with statistically significant effects on
one or both responses. The number next to each tool’s name in
Column 1 is the number of options with statistically significant
settings. Overall, for all verification tools, at most half of con-
figuration options had at least one setting with a statistically
significant effect on the verification results. Furthermore, a
majority of such option settings presented tradeoffs, in that,
they either increased or decreased both responses together
(highlighted as underlined blue in Table III).

Specifically, there were 12 (18%), 5 (20%), 10 (21%), and 9
(14%) option settings with statistically significant effects for
CBMC, Symbiotic, JayHorn, and JBMC, respectively. More
notably, for CBMC, JayHorn, and JBMC, 67%, 40%, and 56%
of such significant option settings presented tradeoffs. None of
Symbiotic’s settings presented tradeoffs in our models.

As an example of the tradeoffs a settings can present,
CBMC’s --partial-loops has an estimated effect of decreasing
the number of correct and incorrect results by 83 and 77,
respectively. This option allows partial execution of loops,
which can make finding counterexamples at small unwinding
bounds easier [24]. The drawback is that it may model spurious
paths that do not exist in the original program, which could

TABLE III: Configuration option settings with statistically
significant effects on the verification results, ranked by the
size of the estimated effect on the Correct response. Options
in underlined blue present tradeoffs (i.e., increase or decrease
both corrects and incorrects together). Options without a set-
ting (e.g., --partial-loops of CBMC) are boolean flag options.

Tool Configuration option settings
Significant effects

on response
Correct Incorrect

CBMC (9)

--partial-loops -82.64 -76.63
--nondet-static 36.91 -19.16
--paths def 49.22 19.24
--full-slice 32.70 34.30
--refine-strings 31.77 16.69
--no-assumptions 18.88 20.82
--solver z3 43.90 N/A
--paths:fifo -24.13 -14.32
--solver boolvector -36.57 N/A
--depth 100 45.06 90.23
--depth 1000 7.29 22.82
--solver yices -31.58 N/A

Symbiotic (5)

--overflow-with-clang -29.69 14.42
--explicit-symbolic 9.44 N/A
--no-slice 13.93 -26.01
--undefined-retval-nosym 6.10 N/A
--repeat-slicing 2 -7.12 8.22

JayHorn (6)

-initial-heap-size 100 -47.65 -8.45
-heap-mode bounded -25.53 2.77
-heap-mode auto 23.74 N/A
-heap-limit 1 -44.90 24.05
-solver eldarica -39.09 -22.67
-heap-limit 10 -10.14 2.75
-initial-heap-size 10 24.37 N/A
-inline-size 100 -19.40 -5.36
-bounded-heap-size 10 16.75 N/A
-step-heap-size 10 N/A -6.43

JBMC (8)

--path def 80.56 30.76
--localize-faults -40.00 -37.54
--paths fifo -42.13 -13.65
–java-threading -15.07 N/A
--full-slice -16.09 9.19
--slice-formula 12.17 7.45
--depth 100 N/A 74.68
--depth 1000 N/A 34.63
--symex-driven-lazy-load 28.93 N/A

cause incorrect results.
We use two code examples in Figure 1 to illustrate the

tradeoff --partial-loops presents. Both examples were extracted
from the SV-COMP 2018 program set. In Figure 1a, P1

(extracted from the program Float div true-unreach-call.c)
is a safe program in that the assertion at line 10 always holds.
This is because the loop at lines 5-8 keeps dividing x by
2.5 until it reaches a very small number that is below the
sensitivity of the float type in C. The loop eventually ends as
the pre- and post- division values become 0. In our dataset, 116
configurations incorrectly judged P1 as unsafe, and they all
set --partial-loops. This is because the analysis insufficiently

333

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

unwinds the while loop, and the --partial-loops option allows
the analysis to accept the partial loop execution as a valid path.
To successfully verify P1, a configuration needs to include a
sufficient level of loop unwinding and disable --partial-loops.

On the other hand, P2 (extracted from the program
standard init5 false−unreach−call ground.c) is an un-
safe program in that the assertion at line 11 in Figure 1b
never holds. In our dataset, P2 was correctly judged as unsafe
only by the 63 configurations that set --partial-loops. For P2,
analyzing all loop iterations is not necessary to determine that
the assertion will fail as long as the first iteration of the loop
at lines 8-9 is analyzed. Therefore, partially accepting loops
is a safe assumption for P2. The configurations that did not
use this option (including the best-precision-config) spent too
much time in loop unwinding and eventually timed out. The
above examples illustrate that the effectiveness of a tool’s
configuration options may depend on the target program.

However, not all options present tradeoffs. In Table III,
some option settings (19 out of 36) have uniform effects.
These option settings can have uniformly positive effects
(i.e., they increase the number of corrects and/or decrease
the number of incorrects), or uniformly negative effects (i.e.,
they decrease the number of corrects and/or decrease the
number of incorrects). For example, setting --explicit-symbolic
in Symbiotic is estimated to produce 9 more correct results
without a significant effect on the number incorrect results.
This option makes Symbiotic initialize parts of memory with
non-deterministic values. Without this option, evaluation is
done with symbolic values, a costly step that requires tracking
many more execution paths, causing Symbiotic to timeout.

Interestingly, all of Symbiotic’s options had uniform effects.
One can use such uniform options in the configuration if the
goal is to increase the likelihood of completing a verification
task. Indeed, we confirmed that the most-correct-config set 4
out of 5 of these options consistently with the models’ esti-
mated effects (e.g., disabling --overflow-with-clang). However,
recall our answer to RQ1; doing so still cannot produce a one-
size-fits-all configuration that completes all the verification
tasks other configurations did.

In summary, not all configuration option settings have
significant effects on the verification results. Those that do
often present tradeoffs that depend on the target program,
further supporting our argument that these tools likely do not
have any one-size-fits-all configuration that would apply to all
target programs.

III. THE SATUNE APPROACH

The results of our empirical study motivated us to design
an automated approach to tune the configuration spaces of
static verification tools so they can successfully verify more
programs. As shown in Section II, the four tools under evalu-
ation have very precise best-precision-configs. However, these
configurations can complete fewer tasks relative to the total
number of tasks all configurations can complete. Therefore,
we designed SATUNE (for Simulated Annealing Tune) with

the goal of outperforming the tools’ most-correct-config – in
other words, to maximize the number of correct results.

At a high level, given a tool and target program, SATUNE
searches through the tools’ configuration space to find a con-
figuration that is likely to complete with a correct verification
result on the target program. We made three key design
choices, based on the results of the study in Section II, that
differentiate SATUNE from other approaches.

The first design choice is the adaptation of a meta-heuristic
search algorithm. The findings in Section II-B demonstrate
that there is no one-size-fits-all configuration for any tool.
Thus, for each target program, it is necessary to explore the
configuration space for a suitable configuration. However, it
is infeasible to explore every configuration of a verification
tool with even a modest number of configuration options. A
meta-heuristic search algorithm probabilistically explores such
search spaces to quickly locate a suitable configuration with
which to run the tool for a given verification task. This choice
is critical for both the efficacy and efficiency of SATUNE.

The second design choice is that of the fitness function,
f. To perform a meta-heuristic search, we need a method to
determine the fitness of a configuration—that way, the search
knows whether a new candidate configuration is better than the
current best configuration. The only way to know a configura-
tion’s true fitness would be to run the verification tool, observe
whether it completes, and validate its result. However, the vali-
dation step may not even be possible to perform automatically,
and even if it were, it would be prohibitively expensive to do
repeatedly throughout the search. Instead, we use f, which is
a learned model that effectively approximates the fitness of a
tool configuration (such approximations are commonly known
as a surrogate fitness function in the literature [32]). Our model
needs to be trained once for each tool, but then incurs little
overhead when queried during search. The model steers the
search toward configurations that are likely to complete a
verification task with a correct result.

The third design choice is in the data we use to train f. As
demonstrated in Section II-B, there are many configuration
options that present tradeoffs in terms of producing correct
and incorrect results, based on the specific target programs.
These options should be evaluated for each verification task
individually and set in a way that will increase the chance
of getting a correct result. Thus, we train f not only on the
results of configurations in the dataset, but also on the features
of the target program, so that it can learn the ways that options
interact with program features (see Section III-B).

Figure 2 shows the workflow of SATUNE. To use SATUNE,
a user provides a target program and a verification tool with
an input configuration.4 SATUNE then runs the tool on the
target program using the provided input configuration. If the
run produces a conclusive result, it is reported to the user; in
this case, SATUNE incurs no overhead. If the run does not lead
to a conclusive result, the meta-heuristic configuration search

4In our evaluation, we use the best-precision-config as the input configu-
ration (Section IV).

334

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Workflow of the SATUNE approach.

begins. We now discuss two key components of SATUNE: the
meta-heuristic configuration search and the surrogate fitness
function.

A. Meta-heuristic Configuration Search

There exist various meta-heuristic search algorithms in the
literature, such as tabu search [33], hill climbing [34], genetic
algorithms [35], and simulated annealing [36]. Among them,
simulated annealing [36] has been shown to be more effective
in finding fitter objects (like covering arrays [28], [37]–[39]
and orthogonal arrays [40]) in large and complex combinato-
rial spaces quickly [25], [41], [42]. Considering the similarity
in the search spaces of the mentioned successful applications,
we decided to derive our meta-heuristic configuration search
algorithm from simulated annealing [36], [43], [44].

At a high level, simulated annealing is a stochastic search
algorithm [45] that iteratively searches for a good solution
by altering the current state to generate a new candidate state
called a neighboring state. If the neighboring state is judged to
be better than the current state according to some heuristic, it is
accepted as the current state for the next search iteration. If the
neighboring state is judged to be worse than the current state, it
may still be accepted probabilistically to help the model avoid
becoming stuck in local optima. The probability of selecting
a worse configuration decreases over the search. This is done
through the three control parameters: the initial temperature
T0, the cooling rate R by which the temperature (T) is
reduced every iteration, and the stopping temperature Ts.
Higher temperatures lead to higher probabilities of accepting
inferior candidates (i.e., inferior candidates are more likely to
be accepted in early iterations than in later iterations), which
allows simulated annealing to be more flexible and exploratory
early in the search process. The search ends either when an
acceptable solution is found according to some criteria or the
temperature falls below Ts.

Algorithm 1 depicts our meta-heuristic configuration search
algorithm that adapts simulated annealing. The inputs to this
algorithm are: (1) the tool’s configuration space CS = 〈O,D〉

where O is the set of configuration options and D is their
domains, such that di ∈ D is the set of possible values that
option oi ∈ O could take on (sampled for integer domains and
exhaustive otherwise); (2) the target program P ; and (3) the
surrogate fitness function f.

Lines 2-7 perform initialization. First, we initialize the
control parameters5 as T0=1, Ts=10−5, R=10−4. Then, we
set the running temperature T to the starting temperature T0,
and the isConclusive flag is initialized as ⊥ indicating
an inconclusive result. At line 5, the current configuration
c and the best configuration c∗ are both initialized with the
default configuration (or a randomly generated one if the
default is not available). At line 6, the program representation
vector V is initialized with the features extracted from P (see
Section III-B). At line 7, f is used to compute the cost of c, Ec,
using the concatenation of V and c as denoted by 〈V ++c〉. Ec

is the probability of getting either an inconclusive or incorrect
result if c were used to run the verification tool on the target
program represented with features V .

Lines 8 to 18 implement an iterative search process that
aims to select a configuration that is likely to complete the
verification task with a correct result. On line 8, Ts<T
checks that the temperature T has not decreased below the
stopping temperature Ts [36], which is the standard stopping
condition for simulated annealing. In addition, the search
stops if the verification run is conclusive, because our goal
is to find a configuration which will produce a conclusive
verification result rather than an optimal one. During each
iteration of the inner loop (lines 9-14), the algorithm first
generates a new neighboring configuration c′ (line 10). To
generate a new neighboring configuration, we change the value
of a single option oi in the current configuration to another
random value from its domain di. This simple approach has
been shown to be effective for exploring large search spaces
in a cost-effective manner in similar search problems (e.g.,
combinatorial testing [28], [37], [42], [46]). The algorithm
then computes the cost of c′ using f (line 11), and reduces
the running temperature by the cooling rate (line 13).

This random configuration generation repeats until one of
the acceptance conditions on line 14 is met: either ∆E<0,
meaning c′ is better than c according to f, or the algorithm de-
cides to accept the inferior c′ with probability e−k∆E/T [47].
This probability reduces with T . Once a state is accepted, c and
Ec are updated (line 15). If c is the best so far (i.e., Ec<Ec∗),
then c∗ and Ec∗ are also updated accordingly (lines 16-17).
When a new c∗ is found, we run the verification tool using c∗

for the task P . If the verifier produces a conclusive result, the
search ends and we return the result (line 19). Otherwise, the
search continues to the next iteration.

Note that running the verification tool is the most expensive
step of the Algorithm 1. In comparison, learning f, computing

5We empirically determined these values with preliminary experiments that
showed that T0 and Ts did not impact the performance significantly, while R
did. Larger R values (0.01, 0.001) caused the search end too quickly without
sufficient exploration while smaller values (10−5) caused longer search times.

335

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Meta-heuristic configuration search.
1: function CONFIGSEARCH(CS= 〈O,D〉, P , f)
2: T0 ← 1;Ts ← 10−5;R← 10−4 . control parameters
3: T ← T0

4: isConclusive← ⊥
5: c∗ ← c← getRandomOrDefault(CS)
6: V ← getProgramRepresentation(P)
7: Ec∗ ← Ec ← f (〈V ++ c〉) . cost for 〈V ++c〉
8: while Ts < T ∧ ¬isConclusive do
9: repeat

10: c′ ← getNeighboringConfig(CS, c)
11: Ec′ ← f (〈V ++c′〉)
12: ∆E ← Ec′ − Ec

13: T ← T − (T ×R)
14: until ∆E < 0 ∨ rand(0, 1) < e−k∆E/T

15: c, Ec ← c′, Ec′ . accept
16: if Ec < Ec∗ then
17: c∗, Ec∗ ← c, Ec . best config so far
18: isConclusive← runV erifier(P, c)

19: return 〈isConclusive, c∗〉

program representations, generating random configurations,
and computing their cost take negligible time.

B. Learning the Surrogate Fitness Function

We learn the surrogate fitness function f using the dataset
we created for the empirical study in Section II. In this
dataset, each data point is of the form 〈V ++c〉=X where
X ∈ {correct, incorrect, inconclusive} is the verification
result and ++ is the concatenation operator. By including both
the program features and configuration in each data point,
our models can learn from the interactions between them. f
is trained to differentiate between data points with either an
incorrect or inconclusive verification result and data points
with a correct verification result. Effectively, f returns the
probability of producing an incorrect or inconclusive for a
given 〈V ++c〉 combination as its cost. Formally,

Ec = f(〈V ++ c〉) =P [incorrect | 〈V ++ c〉]
+ P [inconclusive | 〈V ++ c〉]

Recall that Algorithm 1 aims at minimizing Ec, which
translates to locating configurations that are more likely to
produce conclusive and correct results.

Past research has applied a variety of models and features
to learn from program code [48]–[51]. In this work, we use a
simple Bag of Words model [52] for its simplicity and relative
efficacy in representing programs for classifying static analysis
results [50]. We represent a program as a frequency vector
by counting the frequencies of program instructions like load,
store, allocate, and call; and certain constructs like branches,
loops, functions, and primitive/array/pointer/compound types.
This simplicity makes our approach somewhat language-
agnostic (i.e., extendable to any programming language by
identifying the relevant program instructions and constructs).

C. Implementation

We instantiated SATUNE to tune the configuration spaces of
CBMC, Symbiotic, JayHorn, and JBMC. We learned the fitness
functions with a random forest algorithm from Weka [53]–
[55]. To construct the Bag of Words model, we counted
the occurrence of intermediate representation (IR) instruction
types and different program features (e.g., loops, branches,
and function calls) in our benchmarks. The program features
were collected via simple static analyses for C and Java. C
programs (targeted by CBMC and Symbiotic) are represented
by frequency vectors for 11 program features and 46 LLVM
IR instructions [56]. Java programs (targeted by JayHorn and
JBMC) are represented by frequency vectors of 9 program
features and 23 WALA IR instructions [57]. LLVM and
WALA are popular frameworks for the analysis of C and Java
programs, respectively.

We implemented SATUNE in 600 lines of Java code with
a command-line interface (cli). The SATUNE cli takes a
verification tool, a target program to be verified, and the initial
configuration as input.

IV. EVALUATION

In this section, we discuss the experimental setup for
evaluating SATUNE and answer two research questions on
how well it performs.

A. Experimental Setup

We trained SATUNE’s fitness function on the dataset we
generated in Section II. We then evaluated it against other po-
tential strategies for selecting a verification tool configuration,
in terms of both correctness of the results and running time.

1) Training of SATUNE’s fitness function: We split the
dataset of each verification tool into five equal partitions that
are disjoint by benchmark programs. Four of them are used for
training the fitness function, f, while one partition is held out
to evaluate SATUNE (using the f internally). We then rotated
the partitions and repeated this process 25 times to perform
5-fold cross-validation [58] with five different random seeds.
Since these repetitions allow all of the data to be used for both
training and evaluation (at different iterations), we were able
to evaluate SATUNE on the entire dataset.

In total, we trained 100 surrogate fitness functions (5 ran-
dom seeds × 5-fold cross-validation × 4 tools). We report the
total number of conclusive results across all cross-validation
sets as SATUNE’s results.

2) Comparison Baselines: To the best of our knowledge,
SATUNE is the first tool- and language-agnostic approach
that automatically configures program verification tools. We
designed three baselines that simulate ways a user might use
and tune a verification tool.

The first baseline simulates a user who would only try a
single configuration of a tool and accept whatever outcome
that configuration gives. We assume the user does not have
extensive domain expertise. Rather than manually tuning the
tool for a target program, they simply try a configuration that

336

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Results for SATUNE and three baselines. The numbers in normal font are the median of 5 runs (with different
random seeds for SATUNE and precision→random), and the numbers in the smaller font are the semi-interquartile range (SIQR).
For Symbiotic and JBMC, the results of precision→correct are not shown because they are the same as the most-correct-config.

Tool Approach Correct Incorrect Inconclusive Precision

CBMC

SATUNE 804 12 196 13 0 3 80.40%
precision→random 738 13 195 8 67 13 79.10%
precision→correct 704 0 262 0 34 34 72.88%
most-correct-config 635 0 262 0 103 0 70.79%

Symbiotic
SATUNE 277 2 1 0 387 2 99.64%
precision→random 264 1 1 0 400 1 99.62%
most-correct-config 261 0 1 0 403 0 99.62%

JayHorn

SATUNE 240 0 13 2 115 2 94.86%
precision→random 211 4 14 2 143 2 93.79%
precision→correct 247 0 38 0 83 0 86.67%
most-correct-config 227 0 37 0 104 0 85.98%

JBMC
SATUNE 348 2 7 3 13 1 98.08%
precision→random 343 2 6 1 19 1 98.28%
most-correct-config 331 0 0 0 37 0 100%

does well overall. In our evaluation, we use the most-correct-
config of each tool as this baseline.

The second baseline simulates a user who has more time
to try to get a correct result. In this case, the user first tries a
highly precise configuration (e.g., best-precision-config) and
if the result is inconclusive, tries again on a less precise
but performant configuration. In our evaluation, we first run
each tool’s best-precision-config. If it produces a conclu-
sive result, we report it. Otherwise, we fall back to run
the most-correct-config and report the result. We call this
baseline precision→correct. Because the best-precision-config
and most-correct-config are the same for Symbiotic and JBMC
(Section II), the results of precision→correct are the same as
most-correct-config for these tools.

Finally, the third baseline simulates a user whose target
program may be difficult for a verification tool to complete.
The user also has a large amount of time to experiment with
different configurations to find one that may work. In this
baseline, we start by using the best-precision-config. If it
fails to complete within the timeout, a random search begins
based off of the best-precision-config. The neighbor generation
strategy is the same as SATUNE, in that for each iteration
we randomly alter a single setting of a configuration option.
The random search continues until it finds a configuration that
finishes within the time limit, or it reaches 60 attempts. We
call this baseline precision→random.

3) Metrics: We use three metrics in our evaluation: (1) the
number of correct verification results, (2) precision (i.e., the
percentage of conclusive results that are correct), and (3) the
total run time to complete each verification task in minutes.
Each experiment was repeated five times, and we report the
median and semi-interquartile range (SIQR) values for the first
two metrics.

4) Research Questions: Our evaluation aims to answer two
research questions:
• RQ3: Can SATUNE correctly verify more programs than

baselines?

• RQ4: How efficient is SATUNE?
RQ3 compares SATUNE to the three baselines in terms of

number of correct results and precision. Due to the randomness
in both approaches, we also performed statistical analysis to
determine whether the results produced by precision→random
are significantly different from those produced by SAT-
UNE. RQ4 aims to determine how efficient SATUNE’s meta-
heuristic configuration search is. We explore the distribution
of execution times to determine, for each tool, how SATUNE
compares to the three baselines.

B. Experimental Results

1) RQ3: Can SATUNE correctly verify more programs?:
Table IV presents the results of SATUNE and the three base-
lines for each tool using median and SIQR metrics. Overall,
we find that compared to the baselines, SATUNE consistently
achieves the best balance between the number of correct
results and precision.

In all tools but JayHorn, SATUNE completes more tasks
correctly than any other baseline strategy. In Symbiotic, SAT-
UNE produced 16 and 13 more correct results than most-
correct-config and precision→random, respectively, without
any more incorrect results. In JayHorn, precision→correct
completed 7 more tasks correctly than SATUNE, but at the cost
of 25 more incorrect results. Notably, SATUNE allowed CBMC
to complete every task, at the cost of only a single more incor-
rect result than the next-best baseline (precision→random).

In terms of precision, SATUNE achieved higher precision
than all other baselines for every tool but JBMC. SATUNE was
still highly precise in JBMC (98.08%), but recall that JBMC’s
best-precision-config achieved 100% precision. Still, SATUNE
was able to complete 17 more verification tasks correctly than
most-correct-config in JBMC.

Interestingly, we found that SATUNE was able to correctly
complete some verification tasks that no single configuration
in our study could (i.e., tasks that are in the “never solved”
column of Table II). SATUNE correctly completed 1, 8, 1,

337

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

and 3 such tasks for CBMC, Symbiotic, JBMC, and JayHorn,
respectively. This suggests that SATUNE’s fitness function was
able to generalize to configurations it had not previously seen
in the training data.

Last, we discuss the variations in the results using the
SIQR metric. Overall, SATUNE and precision→random had
small variations in their results while most-correct-config and
precision→correct had none. It is expected that no variation
is present in the most-correct-config and precision→correct
results because both are deterministic. The variations of SAT-
UNE and precision→random are due to the randomness in
their search process. For SATUNE, its largest variation from
the CBMC results is still relatively small, accounting for about
1% of the total number of tasks.

2) RQ4: How efficient is SATUNE?: Figure 3 illustrates
the distribution of the execution times to verify each program
(y-axis in logarithmic scale) as box-plots for all of our exper-
iments. Each box-plot represents the conclusive verification
runs of a tool using SATUNE or a baseline approach. The
width of the box-plots reflects the population size, i.e., the
number of correct + incorrect results (shown in Table IV).
50% of the data points fall inside the box. The line inside the
box is the median, and the lower and upper ends of the box
correspond to the first and third quartiles, respectively. The
red dot and number show the longest time it takes for each
approach to complete one task. The other dots on the central
line of each box show the outliers.

We found that all four approaches were relatively fast for
most tasks, with 75% of tasks being completed in under a
minute in all cases. Still, we see that even in the worst case
(red dots), SATUNE was 2-4x faster than precision→random.
This is attributable to SATUNE’s fitness function—specifically,
because it screens configurations in advance and only runs
them if they are judged to be fit. In JayHorn, where SATUNE
had the highest median and maximum run time, it generated
a median of 143 configurations and only ran 3 of them. In
contrast, random search generated and ran a median of 9
configurations.

Figure 3 also shows that most-correct-config was the only
baseline that consistently did better than SATUNE in terms of
median execution time. This is expected since most-correct-
config only runs a single configuration (with 60 seconds
timeout). More notably is that SATUNE is comparable to (or,
in the case of CBMC, outperforms) precision→correct, which
only runs two configurations. These findings demonstrate the
efficiency of SATUNE and the significant advantage its fitness
function gives it over other search strategies.

V. THREATS TO VALIDITY

Here we enumerate the potential threats to the validity
of our work and the steps we took to mitigate them. First,
the benchmark dataset we used from SV-COMP is primarily
composed of artificial benchmarks. Thus, the conclusions
we made about the relative quality of SATUNE compared
to other baselines may not generalize to large, real-world

9.1

34.6

2.8
1.8

13.3

29.3

1

16.4

35.5

2

1

4.3

18.5

0.9

CBMC Symbiotic JayHorn JBMC

SA
Tu
ne

pre
cis
e→
ran
do
m

pre
cis
e→
co
rre
ct

mo
st-
co
rre
ct-
co
nfi
g

SA
Tu
ne

pre
cis
e→
ran
do
m

mo
st-
co
rre
ct-
co
nfi
g

SA
Tu
ne

pre
cis
e→
ran
do
m

pre
cis
e→
co
rre
ct

mo
st-
co
rre
ct-
co
nfi
g

SA
Tu
ne

pre
cis
e→
ran
do
m

mo
st-
co
rre
ct-
co
nfi
g

1

4

16

32

Ta
sk

 c
om

pl
et

io
n

tim
e

in
 m

in
ut

es
 (l

og
)

Fig. 3: Execution time of SATUNE and the baselines.

programs. Unfortunately, we are unaware of a large real-
world benchmark for which the ground truths are known,
but we believe the large number of programs we used and
the diversity of the SV-COMP benchmark partially mitigate
this potential threat. Second, the configuration samples in our
empirical study may not be representative of the tools’ full
configuration spaces. Our configuration samples include every
three-way combinations of configuration option settings, and
past research in configurable software indicates that the ma-
jority of program behaviors are attributable to the interaction
of few options [27]. Finally, there could be variance in the
performance of SATUNE (and precision→random) caused by
non-deterministic operations in machine learning and configu-
ration selection. We partially mitigated this potential threat by
running 5 replications of each experiment, and reporting the
median and semi-interquartile range values which suggested
small variations (RQ3).

VI. RELATED WORK

To the best of our knowledge, this work is the first to use
meta-heuristic search and machine learning to tune software
verification tools with large configuration spaces. Our work
is related to work that (1) studies the configuration spaces of
analysis tools, (2) selects a static analysis tool or a configura-
tion of a static analysis tool that is most suited to a given task,
(3) selectively applies algorithms in a static analysis, (4) uses
machine learning models as fitness functions in meta-heuristic
search, and (5) tunes high performance computing systems for
a given system architecture and hardware.

Studies of Tool Configuration Spaces. We believe we
are the first work to systematically study the configuration

338

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

spaces of static program verification tools. Other work has
engaged in similar goals with other types of static analyzers,
specifically focusing on the tradeoffs presented by different
configurations and configuration option settings [1]–[3]. Wei
et al. present a study that evaluates the tradeoffs in the 162
different configurations of a numerical static analysis for Java
programs [2]. Smaragdakis et al. [1] and Lhoták and Hendren
[3] instantiate multiple variants of context-sensitive points-
to analysis for Java to understand the tradeoffs of different
design decisions. The tools we studied present much larger
configuration spaces than those in the past studies that required
us to apply statistical analysis to understand the impact of
configuration options.

Configuration and tool selection. Our work is also highly
relevant to those that select strategies (i.e., full configurations)
within a static analysis tool [6], [10], predict or rank which
static analysis tool is suitable for a given task [11]–[13], and
more broadly attempt to learn performance models of tool
configuration spaces [59]–[68]. Beyer and Dangl present a
selection approach that uses four manually defined binary
program features to select between three manually defined
verification strategies for CPACHECKER [6]. Richter and
Wehrheim present PESCO, which uses machine learning to
rank five CPACHECKER verifiers [10]. SATUNE differs from
these efforts in that it explores large and complex config-
uration spaces in a tool- and language-agnostic way using
meta-heuristics, instead of using predefined configurations,
manually defined heuristics, or ranking tools.

Other researchers [11]–[15] have explored selecting a veri-
fication tool or SAT solver from a set that would be the most
appropriate for a given task. For example, Tulsian et al. present
MUX, a machine learning-based approach that uses features
extracted from Windows device drivers to select the fastest
verification tool to analyze them [11]. Xu et al. developed
SATZILLA2012 [14], which is the most recent version of the
SATZILLA tool [15]. SATZILLA2012, given a SAT problem
and a set of SAT solvers as input, attempts to select a solver
that will perform the best in terms of run time. Our research
complements these works by selecting a configuration of a
single static analysis tool. The configuration spaces we select
from are much larger than the sets of tools these works used,
motivating the need for a meta-heuristic search strategy.

Finally, some software product line (SPL) research is closely
related to our work, in that these works use machine learning
or statistical methods to model the effects of setting config-
urations. SPLCONQUEROR is a well-known tool that tries to
compute the optimal configurations of a tool, given a target
metric (e.g., precision or run time) [60]. Similarly, Ha and
Zhang’s DeepPerf models a tool’s configuration space by
training deep neural networks [63]. Nair et al.’s WHAT pre-
dicts a performance model using a small number of sampled
configurations by performing dimensionality reduction on a
target program’s configuration space [66]. FLASH, by Nair et
al., builds a performance model using sequential model-based
optimization, which allows the model to continue learning
about the configuration space as it explores it and produces

samples [67]. Finally, Nair et al., demonstrated that cheap and
inaccurate predictors that rank configurations often perform
as well or better than other more expensive approaches [68].
Other researchers have focused not on performance models,
but rather on evaluating and contributing sampling approaches
for SPLs. Pereira et al. evaluated six different configuration
sampling approaches to determine their relative strengths and
weaknesses for selecting representative configurations [64].
Oh et al. contributed a sampling approach which models
feature spaces as counting binary decision diagrams, and then
produces truly random samples of SPL configurations [65].
While SATUNE also aims to select configurations, it also takes
into account the features of the target program, which allows
it to consider the tradeoffs configuration options of the static
program verification tools present.

Selective Static Analysis. Other related work selectively
applies static analysis algorithms to parts of the target program.
Among analysis algorithms, context sensitivity is the most
studied [5], [8], [9], [16]. For example, Wei and Ryder present
an adaptive context-sensitive analysis that uses eight features
extracted from the points-to and call graphs of JavaScript pro-
grams [8]. Other algorithms such as flow sensitivity have also
been used to develop selective static analysis [69]. Our work
similarly studies the relationship between program features
and analysis algorithms to achieve a good balance between
performance, precision, and soundness, but we consider a
wide range of configuration options while being agnostic
to the analysis algorithm. In addition, instead of developing
new analysis algorithms or tools, our approach automatically
configures existing verification tools.

ML Models as Fitness Functions. Several researchers ex-
plore the use of machine learning models as “surrogate” fitness
functions. Brownlee et al. demonstrated that a Markov network
could be an effective surrogate fitness function in genetic
algorithms for feature selection in Case-Based Reasoning [70].
Jin and Sendhoff use ensembles of neural networks to improve
the performance of evolutionary algorithms [71]. Singh et al.
evaluated both regression models and radial basis functions as
surrogate fitness functions in simulated annealing [72]. While
these papers focus on improving the meta-heuristic algorithms,
we are not aware of any other work that automatically learns
surrogate fitness functions for tuning verification tools with
large configuration spaces.

High Performance Computing. Lastly, a distantly related
line of work includes automatically tuning high performance
computing (HPC) systems for a given system architecture
and hardware. Agakov et al. use machine learning to perform
iterative optimization for HPC systems at compile time [73].
Ansel et al. present an extensible framework, OPENTUNER,
that enables writing domain-specific HPC tuners [74]. For a
more comprehensive review of the literature on HPC system
tuning, we refer readers to a recent survey by Ashouri et
al [75]. Our work differs from the work above in that we
use a meta-heuristic search augmented with a surrogate fitness
function for tuning program verification tools—which are not
HPC systems—to get a desired verification outcome.

339

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented SATUNE, the first auto-tuning
approach for static program verification tools with large con-
figuration spaces. The design of SATUNE is motivated by an
empirical study that provided important insights on the charac-
teristics of configuration spaces and the impacts of individual
configuration options on the precision and overall correct-
ness of the verification tools’ results. First, we demonstrated
that there is no one-size-fits-all configuration in any tool.
Even the most-correct-config could not complete certain tasks
that other configurations did. Second, we found that many
configuration options present tradeoffs between precision and
performance, and they should be tuned individually for given
target programs to get the most out of the tools’ capabilities.
SATUNE is novel in that it uses a simple meta-heuristic
search algorithm with surrogate fitness functions learned from
data to explore large configuration spaces and avoid running
configurations that are likely to produce incorrect results. It
is tool- and language-agnostic. We applied SATUNE to four
popular verification tools for both C and Java programs and
evaluated its performance using the ground-truth datasets. The
evaluation shows that SATUNE achieves the best balance
between performance and precision improvements compared
to the baselines we used.

In future work, we will integrate other machine learning
techniques, such as neural networks, into SATUNE to train the
surrogate fitness function. This will elide the need to manually
identify and extract program features, and enable SATUNE to
take advantage of more complex structural information that
neural networks can potentially learn. We will also extend
the configuration generation step of SATUNE to incorporate
the findings from our empirical study in Section II-B. This
will enable more effective scanning of the configuration space
and help improve the tools’ precision by better avoiding
configurations that are likely to lead to incorrect results. We
will also extend our dataset and apply SATUNE to additional
tools targeting other programming languages.

ACKNOWLEDGMENTS

This work is partly supported by NSF grants CCF-2007314,
CCF-2008905 and CCF-2047682, and the NSF graduate re-
search fellowship program.

REFERENCES

[1] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your
contexts well: Understanding object-sensitivity,” SIGPLAN Not.,
vol. 46, no. 1, p. 17–30, Jan. 2011. [Online]. Available: https:
//doi.org/10.1145/1925844.1926390

[2] S. Wei, P. Mardziel, A. Ruef, J. S. Foster, and M. Hicks,
“Evaluating design tradeoffs in numeric static analysis for java,” in
Programming Languages and Systems - 27th European Symposium
on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. Cham: Springer
International Publishing, 2018, pp. 653–682. [Online]. Available:
https://doi.org/10.1007/978-3-319-89884-1 23

[3] O. Lhoták and L. Hendren, “Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation,” ACM Trans.
Softw. Eng. Methodol., vol. 18, no. 1, Oct. 2008. [Online]. Available:
https://doi.org/10.1145/1391984.1391987

[4] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: Understanding and
dealing with over-designed configuration in system software,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 307–319. [Online]. Available:
https://doi.org/10.1145/2786805.2786852

[5] S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-sensitivity
for points-to analysis,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
pp. 100:1–100:28, Oct. 2017.

[6] D. Beyer and M. Dangl, “Strategy Selection for Software Verification
Based on Boolean Features,” in Leveraging Applications of Formal
Methods, Verification and Validation. Verification, ser. Lecture Notes in
Computer Science, T. Margaria and B. Steffen, Eds. Cham: Springer
International Publishing, 2018, pp. 144–159.

[7] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective analy-
sis: Context-sensitivity, across the board,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014,
pp. 485–495.

[8] S. Wei and B. G. Ryder, “Adaptive context-sensitive analysis
for javascript,” in 29th European Conference on Object-Oriented
Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015, pp. 712–734. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.ECOOP.2015.712

[9] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Scalability-first pointer
analysis with self-tuning context-sensitivity,” in Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: ACM, 2018, pp. 129–140.

[10] C. Richter and H. Wehrheim, “Pesco: Predicting sequential combinations
of verifiers,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Springer. Cham: Springer
International Publishing, 2019, pp. 229–233.

[11] V. Tulsian, A. Kanade, R. Kumar, A. Lal, and A. V. Nori, “Mux:
algorithm selection for software model checkers,” in Proceedings of the
11th Working Conference on Mining Software Repositories, ACM. New
York, NY, USA: ACM, 2014, pp. 132–141.

[12] M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim, “Predicting
Rankings of Software Verification Tools,” in Proceedings of the 3rd ACM
SIGSOFT International Workshop on Software Analytics, ser. SWAN
2017. New York, NY, USA: ACM, 2017, pp. 23–26.

[13] Y. Demyanova, T. Pani, H. Veith, and F. Zuleger, “Empirical software
metrics for benchmarking of verification tools,” Formal Methods in
System Design, vol. 50, no. 2, pp. 289–316, Jun. 2017.

[14] L. Xu, F. Hutter, J. Shen, H. H. Hoos, and K. Leyton-Brown,
“Satzilla2012: Improved algorithm selection based on cost-sensitive
classification models,” Proceedings of SAT Challenge, vol. 2012, 2012.

[15] E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. Hoos,
“Satzilla: An algorithm portfolio for sat,” Solver description, SAT
competition, vol. 2004, 2004.

[16] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided context
sensitivity for pointer analysis,” Proc. ACM Program. Lang., vol. 2, no.
OOPSLA, pp. 141:1–141:29, Oct. 2018.

[17] O. Lhoták and L. Hendren, “Scaling java points-to analysis using
spark,” in Proceedings of the 12th International Conference on Compiler
Construction, ser. CC’03. Berlin, Heidelberg: Springer-Verlag, 2003,
p. 153–169.

[18] D. Beyer, “Automatic verification of c and java programs: Sv-comp
2019,” in Tools and Algorithms for the Construction and Analysis of
Systems, D. Beyer, M. Huisman, F. Kordon, and B. Steffen, Eds. Cham:
Springer International Publishing, 2019, pp. 133–155.

[19] D. Kroening and M. Tautschnig, “Cbmc – c bounded model checker,”
in Tools and Algorithms for the Construction and Analysis of Systems,
E. Ábrahám and K. Havelund, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 389–391.

[20] J. Slabỳ, J. Strejček, and M. Trtı́k, “Checking properties described by
state machines: On synergy of instrumentation, slicing, and symbolic
execution,” in International Workshop on Formal Methods for Indus-
trial Critical Systems, Springer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 207–221.

[21] J. Slaby, J. Strejček, and M. Trtı́k, “Symbiotic: synergy of instrumen-
tation, slicing, and symbolic execution,” in International Conference on

340

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

Tools and Algorithms for the Construction and Analysis of Systems,
Springer. Cham: Springer International Publishing, 2013, pp. 630–632.

[22] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik,
“JBMC: A bounded model checking tool for verifying Java bytecode,”
in Computer Aided Verification (CAV), ser. LNCS, vol. 10981. Cham:
Springer International Publishing, 2018, pp. 183–190.

[23] T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf, “Jayhorn: A frame-
work for verifying java programs,” in International Conference on
Computer Aided Verification, Springer. Cham: Springer International
Publishing, 2016, pp. 352–358.

[24] “Cbmc, understanding loop unwinding,” 2014,
http://www.cprover.org/cprover-manual/cbmc/unwinding 2021-04-019.

[25] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, pp. 11:1–11:29, February 2011.

[26] C. Yilmaz, S. Fouché, M. B. Cohen, A. Porter, G. Demiroz, and U. Koc,
“Moving Forward with Combinatorial Interaction Testing,” Computer,
vol. 47, no. 2, pp. 37–45, Feb. 2014.

[27] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A
classification and survey of analysis strategies for software product
lines,” ACM Comput. Surv., vol. 47, no. 1, Jun. 2014. [Online].
Available: https://doi.org/10.1145/2580950

[28] U. Koc and C. Yilmaz, “Approaches for computing test-case-aware
covering arrays,” Software Testing, Verification and Reliability, vol. 28,
no. 7, p. e1689, 2018.

[29] “Results of the competition,” 2019, https://sv-comp.sosy-
lab.org/2019/results/results-verified/, Accessed: 2021-04-22.

[30] “Results of the competition,” 2018, https://sv-comp.sosy-
lab.org/2018/results/results-verified/, Accessed: 2021-04-22.

[31] T. Speed, “Introduction to fisher (1926) the arrangement of field exper-
iments,” in Breakthroughs in statistics. New York, NY: Springer New
York, 1992, pp. 71–81.

[32] A. E. Brownlee, J. R. Woodward, and J. Swan, “Metaheuristic design
pattern: Surrogate fitness functions,” in Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO Companion ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1261–1264.

[33] F. Glover and M. Laguna, Tabu Search. Boston, MA: Springer US,
1998, pp. 2093–2229.

[34] B. Selman and C. P. Gomes, “Hill-climbing search,” Encyclopedia of
cognitive science, vol. 81, p. 82, 2006.

[35] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Com-
puter, vol. 27, no. 6, p. 17–26, Jun. 1994.

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[37] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Augmenting
simulated annealing to build interaction test suites,” in Proc. of the 14th
Int’l Symposium on Software Reliability Engineering, ser. ISSRE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 394–405.

[38] R. C. Bryce and C. J. Colbourn, “One-test-at-a-time heuristic search for
interaction test suites,” in Proceedings of the 9th annual conference on
Genetic and evolutionary computation, ser. GECCO ’07. New York,
NY, USA: ACM, 2007, pp. 1082–1089.

[39] H. Mercan, C. Yilmaz, and K. Kaya, “Chip: A configurable hybrid
parallel covering array constructor,” IEEE Transactions on Software
Engineering, vol. 45, no. 12, pp. 1270–1291, 2018.

[40] R. Wang and R. Safadi, “Generating mixed multilevel orthogonal arrays
by simulated annealing,” in Computing Science and Statistics. Springer,
1992, pp. 557–560.

[41] J. Stardom, Metaheuristics and the search for covering and packing
arrays. Simon Fraser University Burnaby, 2001.

[42] J. Torres-Jimenez and E. Rodriguez-Tello, “New bounds for binary
covering arrays using simulated annealing,” Information Sciences, vol.
185, no. 1, pp. 137–152, 2012.

[43] P. J. Van Laarhoven and E. H. Aarts, Simulated annealing. Dordrecht:
Springer Netherlands, 1987.

[44] V. Granville, M. Krivánek, and J.-P. Rasson, “Simulated annealing: A
proof of convergence,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 16, no. 6, pp. 652–656, 1994.

[45] F. Neumann and C. Witt, Stochastic Search Algorithms. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 21–32.

[46] B. S. Gulavani and S. K. Rajamani, “Counterexample Driven Refinement
for Abstract Interpretation,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, Berlin, Heidelberg, Mar. 2006, pp. 474–
488.

[47] A. Bach, “Boltzmann’s probability distribution of 1877,” Archive for
History of Exact Sciences, vol. 41, no. 1, pp. 1–40, 1990.

[48] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting Accurate
Method and Class Names,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 38–49.

[49] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learning a
classifier for false positive error reports emitted by static code analysis
tools,” in Proceedings of the 1st ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, ser. MAPL 2017.
New York, NY, USA: ACM, 2017, pp. 35–42.

[50] U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter, “An empirical
assessment of machine learning approaches for triaging reports of a java
static analysis tool,” in 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), IEEE. USA: IEEE Computer
Society, 2019, pp. 288–299.

[51] K. Heo, H. Oh, and K. Yi, “Machine-learning-guided Selectively
Unsound Static Analysis,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 519–529.

[52] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[53] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[54] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[55] E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten,
and L. Trigg, Weka-A Machine Learning Workbench for Data Mining.
Boston, MA: Springer US, 2010, pp. 1269–1277.

[56] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., IEEE. USA:
IEEE Computer Society, 2004, pp. 75–86.

[57] IBM, “T. J. Watson Libraries for Analysis (WALA),” http://wala.
sourceforge.net/, 2006.

[58] R. R. Picard and R. D. Cook, “Cross-validation of regression models,”
Journal of the American Statistical Association, vol. 79, no. 387, pp.
575–583, 1984.

[59] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czar-
necki, A. Wasowski, and H. Yu, “Data-efficient performance learning for
configurable systems,” Empirical Software Engineering, vol. 23, no. 3,
pp. 1826–1867, 2018.

[60] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 284–294.

[61] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski,
“Variability-aware performance prediction: A statistical learning ap-
proach,” in 2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2013, pp. 301–311.

[62] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel,
and G. Saake, “Spl conqueror: Toward optimization of non-functional
properties in software product lines,” Software Quality Journal, vol. 20,
no. 3, pp. 487–517, 2012.

[63] H. Ha and H. Zhang, “Deepperf: Performance prediction for configurable
software with deep sparse neural ne twork,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 2019, pp.
1095–1106.

[64] J. Alves Pereira, M. Acher, H. Martin, and J.-M. Jézéquel, “Sampling
effect on performance prediction of configurable systems: A case
study,” in Proceedings of the ACM/SPEC International Conference
on Performance Engineering, ser. ICPE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 277–288. [Online].
Available: https://doi.org/10.1145/3358960.3379137

[65] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding near-
optimal configurations in product lines by random sampling,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 61–71. [Online].
Available: https://doi.org/10.1145/3106237.3106273

341

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

[66] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Faster discovery
of faster system configurations with spectral learning,” Automated
Software Engg., vol. 25, no. 2, p. 247–277, Jun. 2018. [Online].
Available: https://doi.org/10.1007/s10515-017-0225-2

[67] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, “Finding faster
configurations using flash,” IEEE Transactions on Software Engineering,
vol. 46, no. 7, pp. 794–811, 2020.

[68] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using bad learners
to find good configurations,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
257–267. [Online]. Available: https://doi.org/10.1145/3106237.3106238

[69] H. Oh, H. Yang, and K. Yi, “Learning a strategy for adapting a program
analysis via bayesian optimisation,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: ACM, 2015, pp. 572–588.

[70] A. E. I. Brownlee, O. Regnier-Coudert, J. A. W. McCall, and S. Massie,
“Using a markov network as a surrogate fitness function in a genetic
algorithm,” in IEEE Congress on Evolutionary Computation. Barcelona,
Spain: IEEE, 2010, pp. 1–8.

[71] Y. Jin and B. Sendhoff, “Reducing fitness evaluations using clustering
techniques and neural network ensembles,” in Genetic and Evolutionary
Computation – GECCO 2004, K. Deb, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 688–699.

[72] H. K. Singh, T. Ray, and W. Smith, “Surrogate assisted simulated
annealing (sasa) for constrained multi-objective optimization,” in IEEE
Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010,
pp. 1–8.

[73] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in Proceedings of the
International Symposium on Code Generation and Optimization, ser.
CGO ’06. USA: IEEE Computer Society, 2006, p. 295–305.

[74] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, ser. PACT ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
303–316.

[75] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” ACM Comput.
Surv., vol. 51, no. 5, Sep. 2018.

342

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 05,2023 at 21:31:29 UTC from IEEE Xplore. Restrictions apply.

